K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

>                   

20 tháng 7 2015

19911993 > 19931991

30 tháng 9 2015

51994 + 51993 - 51992 =51992(52+5-1)=51992.29 chia het cho 29

=> 51994 + 51993 - 51992 chia hết cho 29 

30 tháng 9 2015

=\(5^{1992}\left(5^2+5-1\right)\)

=\(5^{1992}\cdot29\)

mà 29 chia hết cho 29 => \(5^{1992}\cdot29\) chia hết cho 29

Vậy ....

31 tháng 8 2016

Có: \(3^{1994}+3^{1993}-3^{1992}=3^{1992}\left(3^2+3-1\right)=11\cdot3^{1992}\)

=>đpcm

13 tháng 7 2017

mình cũng thấy vậy là đúngok

27 tháng 9 2016

Bài 1:

+) Ta có: \(5^{40}=\left(5^4\right)^{10}=625^{10}\)

Vì \(620^{10}< 625^{10}\) nên \(5^{40}>620^{10}\)

Vậy \(5^{40}>620^{10}\)

+) Ta có: \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}\)

\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}\)

Do \(4^{333}=\left(4^3\right)^{111}=64^{111}< 3^{444}=\left(3^4\right)^{111}=81^{111}\) và \(111^{333}< 11^{444}\) nên suy ra \(111^{444}.3^{444}>4^{333}.11^{333}\Rightarrow333^{444}>444^{333}\)

Vậy \(333^{444}>444^{333}\)