K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

11 tháng 6 2019

Đáp án C

log 3 2 x + y + 1 x + y = x + 2 y ⇔ log 3 2 x + y + 1 − log 3 x + y = 3 x + y − 2 x + y + 1 + 1 ⇔ log 3 2 x + y + 1 + 2 x + y + 1 = log 3 3 x + y + 3 x + y *

Xét hàm số f t = log 3 t + t  trên khoảng 0 ; + ∞ ⇒ f t  là hàm số đồng biến trên 0 ; + ∞  

Mà * ⇔ f 2 x + y + 1 = f 3 x + 3 y ⇔ 2 x + y + 1 = 3 x + 3 y ⇔ x + 2 y = 1  

Đặt a = y > 0 ⇔ y = a 2 ⇔ x = 1 − 2 y = 1 − 2 a 2 ,  khi đó T = g a = 1 1 − 2 a 2 + 2 a  

Xét hàm số g a = 1 1 − 2 a 2 + 2 a trên khoảng 0 ; 1 2 ,  suy ra min 0 ; 1 2 g a = 6  

Vậy  giá trị nhỏ nhất cần tìm là T min = 6  

25 tháng 2 2016

Ta có : x3+y3+z3=3xyz

<=>x3+y3+3x2y+3xy2+z3-3xyz-3x2y-3xy2=0

<=>(x+y)3+z3-3xy.(x+y+z)=0

<=>(x+y+z)[(x+y)2-(x+y).z+z2]-3xy.(x+y+z)=0

<=>(x+y+z).(x2+2xy+y2-xz-yz+z2-3xy)=0

<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0

<=>x+y+z=0(loại) hoặc x2+y2+z2-xy-yz-xz=0

*x2+y2+z2-xy-yz-xz=0

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z

Suy ra: \(P=\frac{xyz}{\left(x+x\right)\left(y+y\right)\left(z+z\right)}=\frac{xyz}{2x.2y.2z}=\frac{1}{8}\)

23 tháng 12 2016

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)

14 tháng 3 2016

Ta có: x2>=0(với mọi x)

=>2x-x2<=2x(với mọi x)

->(2x-x2)(x+2)(x+4)<=(2x)(x+2)(x+4)(với mọi x) hay A<=(2x)(x+2)(x+4)

Do đó, GTLN của A  khi x =0 là (2x)(x+2)(x+4) hay 0(x+2)(x+4) hay 0

Vậy GTLN của A là 0 khi x=0

21 tháng 2 2016

\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)

<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)

Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)

Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)

Tới đây dễ tự làm 

21 tháng 2 2016

Khử mẫu đặt S P

5 tháng 2 2016

khó quálolang