K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

Đáp án A

13 tháng 1 2018

Đáp án A

Giả sử tứ diện ABCD có AB;AC'AD đội một vuông góc  ⇒ V A B C D = A B . A C . A D 6

Khi đó tứ diện MNPQ có MN;MP;MQ đội một vuông góc  ⇒ V M . N P Q = M N . M P . M Q 6

Ta chứng minh được M N A B + M P A C + M Q A D = 1  ( dựa vào định lý Thalet), khi đó

M N . M P . M Q = A B . A C . A D . M N A B . M P A C . M Q A D ≤ A B . A C . A D . M N A B + M P A C + M Q A D 3 27 = A B . A C . A D 27

Vậy  V M . N P Q = M N . M P . M Q 6 ≤ 1 27 . A B . A C . A D 6 = V 27 → V max = V 27

23 tháng 8 2017

Chọn A

4 tháng 1 2018

14 tháng 1 2017

Đáp án đúng : C

4 tháng 5 2019

Đáp án đúng : C

15 tháng 2 2019

Đáp án là D

13 tháng 6 2017

Chọn A

18 tháng 10 2017

Chọn B.

 Phương pháp:

+) Với (P), (Q), (R) là 3 mặt phẳng phân biệt, có 

+) Chứng minh hai mặt phẳng song song:

Cách giải: