K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Chọn B

Số tập con của S là  2 6 = 64

Mỗi người có 64 cách chọn tập con, do vậy số phần tử của không gian mẫu là:  64 2

Ta tìm số cách chọn tập con thỏa mãn yêu cầu:

Giả sử tập con của A và B chọn được lần lượt có x,y phần tử 

Khi đó: A có C 6 x cách chọn tập con, lúc này S còn 6 - x phần tử.

Ta chọn ra 2 phần tử gọi là a,b từ x phần tử  trong tập con của A để xuất hiện trong tập con của B, có C x 2  cách.

 

Như vậy, tập con của B đã có 2 phần tử chung với tập con của A là a,b ta cần chọn thêm (y-2) phần tử khác trong (6-x) phần tử còn lại sau khi A đã chọn tập con,ở bước này có C 6 - x y - 2  cách chọn.

Vậy có:   C 6 x C 6 - x y - 2 cách chọn tập con thỏa mãn.

Ta có điều kiện: 

 

Cho x nhận các giá trị từ 2 đến 6, số cách chọn tập con thỏa mãn yêu cầu đề bài là:

= 240 + 480 + 360 + 120 + 15 = 1215

Xác suất cần tính bằng: 

 

21 tháng 11 2018

Đáp án C

Ta tìm số cặp số (a;b) thoả mãn

Có 49 cặp (a;b) thỏa mãn. Do đó S gồm 49 phần tử:

Ta tìm số cặp (a;b) thoả mãn

Do đó

 Vậy có 4 cặp số (a;b)có tổng bằng 100 và tích của chúng là một số chính phương.

10 tháng 6 2016

- Có 5 cách chọn chữ số hàng trăm.

- Có 5 cách chọn chữ số hàng chục.

- Có 4 cách chọn chữ số hàng đơn vị.

Số số được tạo thành là:

\(5.5.4=100\) (số)

Tuy nhiên trong 100 số này đã bị mất đi 1 số số chẵn:

012013014015
021023024025
031032034035
041042043045
051052053054

Vậy số số lẻ hơn số số chẵn là 8 số.

Có số số chẵn là:

\(\left(100-8\right):2=46\) (số)

Có số số lẻ là :

\(100-46=54\) (số)

Nếu coi 100 số là 100 %.

Xác xuất chọn được số chẵn ở lần chọn đầu là:

\(46:100.100=46\%\)

Xác xuất chọn được số chẵn ở lần chọn thứ 2 (nếu lần ko trúng) là:

\(46:99.100\approx46,5\)

20 tháng 4 2018

Đáp án C

Số tập con của A là 2 6  

Số tập con gồm đúng 2 phần tử của A là  C 6 2

Xác suất cần tính bằng C 6 2 2 6 = 15 64

24 tháng 4 2016

Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)

\(C_{18}^k\left(k=1,.....,18\right)\)

Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :

\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)

\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)

\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)

\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)

\(\Leftrightarrow17>2k\)

\(\Leftrightarrow k< \frac{17}{2}\)

Điều kiện (*) nên k = 1,2,3,.....8

Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17

Vậy ta có 

\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)

Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.