K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

mk là đag thắc mac ở cái khúc này nè 

sao là 4 cách á

em chưa lớp 8 chị ạ

NV
22 tháng 1 2024

Gọi số có 6 chữ số dạng \(\overline{abcdef}\)

- TH1: \(f=0\)

\(\Rightarrow\) Bộ abcde có \(A_9^5\) cách chọn và hoán vị

TH2: \(f\ne0\Rightarrow f\) có 4 cách chọn (từ các chữ số 2,4,6,8)

a có 8 cách chọn (khác 0 và f), bộ bcde có \(A_8^4\) cách chọn

\(\Rightarrow4.8.A_8^4\) số

Vậy tổng cộng lập được: \(A_9^5+4.8.A_8^4=68880\) số thỏa mãn

16 tháng 4 2023

Gọi số cần tìm là \(\overline{abcd}\)

TH1 : a = 6

Số cách chọn chữ số a : 1 cách

Số cách chọn chữ số b : 2 cách 

Số cách chọn chữ số c,d : \(A^2_6\)

=> Số các số lập được \(1.2.A^2_6\)

TH2 : a = 7 hoặc a = 8

=> Số các số là : \(2.A^3_7\)

Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số

Chia A thành 3 tập hợp:

B={1;4;7}; C={2;5;8}; D={0;3;6}

TH1: 2 số trong B, 2 số trong C

=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)

TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D

=>Có 3*3*1*2*3*3*2*1=324 cách

TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D

=>Có 3*3*1*4!=216 cách

TH4: 3 số trong B, số 0

=>Có 3*3*2*1=18 cách

TH5: 3 số trong B, 1 số khác 0 trong D

=>Có 2*4!=24*2=48 cách

TH6: 3 số trong C, số 0

=>Có 3*3*2*1=18 cách

TH7: 3 số trong C, 1 số khác 0 trong D

=>Có 2*4!=48 cách

=>Có 216+324+216+18+48+18+48=888 cách

Gọi số cần tìm là \(\overline{abcdef}\)

TH1: 0,1,2 là 3 số cuối

=>\(\overline{abc012};\overline{abc210}\)

a có 6 cách

b có 5 cách

c có 4 cách

=>CÓ 6*5*4*2=240 cách

TH2: \(\overline{ab\left\{0,1,2\right\}f}\)

0,1,2 có 3!=6 cách

a có 5 cách

b có 4 cách

f có 3 cách

=>Có 360 cách

TH3: \(\overline{a\left\{0,1,2\right\}ef}\)

0,1,2 có 3!=6 cách

f có 2 cách

e có 5 cách

a có 4 cách

=>Có 6*3*5*4=360 cách

TH4: \(\overline{\left\{0,1,2\right\}def}\)

{0;1;2} có 4 cách

f có 3 cách

d có 5 cách

e có 4 cách

=>Có 4*3*5*4=240 cách

=>Có 120+120+360+360+240=1200 cách

7 tháng 5 2023

TH1 (012)def : chọn a từ (1,2) có 2 cách

chọn b từ (012)/(a) có 2 cách

chọn c từ (012)/(ab) có 1 cách

chọn f chẵn từ (4,6) có 2 cách

với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách

vậy có  2.2.1.4A2.2 số

TH2 a(012)ef 

xếp chỗ cho 3 số (012) có 3! cách

chọn f từ (4,6) có 2 cách 

chọn ae từ 4 số còn lại và xếp có 4A2 cách

 vậy có 3!.2.4A2 số 

TH3  ab(012)f

tương tự TH2

TH4 : abc(012):

chọn f chẵn từ (0,2)  có 2 cách

chọn e từ (012)/(a) có 2 cách

chọn d từ (012)/(ab) có 1 cách

với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách

vậy có 2.2.1.5A3 số 

tổng 4 TH ta có 

2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số

 

 

13 tháng 4 2023

Giúp câu b c vs bạn ơi ;((

\(\overline{abc}\)

c có 3 cách

a có 4 cách

b có 3 cách

=>Có 3*4*3=36 cách

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Từ 4 chữ số 0, 1, 2, 3:

- Hàng trăm có 3 cách chọn.

- Hàng chục có 3 cách chọn.

- Hàng đơn vị có 2 cách chọn.

Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.

b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 3 = 6 số có thể lập được.

- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.

Có tất cả 1. 2. 2 = 4 số có thể lập được.

Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.

TH1: 2 chẵn 2 lẻ

=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)

TH2: 3 lẻ, 1 chẵn

=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)

TH3: 4 lẻ

=>Có \(C^4_5\cdot4!=120\left(cách\right)\)

=>Có 120+960+120=1200 cách