Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Bổ sung thêm AB=DE
Thì ∆ABC=∆DEF (c.g.c)
* Bổ sung thêm ∠C = ∠F
Thì ∆ABC=∆DEF(g.c.g)
* Bổ sung thêm BC = EF
thì ∆ABC=∆DEF (ch-cgv)
CHÚC BẠN NĂM MỚI VUI VẺ
câu 1 chọn D
câu 2 chọn D
câu 3 chọn E tất cả đều đúng
câu 4 chọn B
Câu 1 : C
Câu 2 : D
Câu 3 : D
Câu 4 : B
Câu 5 : Giải :
A B M I A B M I a) b)
Chứng minh :
Xét 2 trường hợp :
- \(M \in AB\) (h.a) Vì MA = MB nên M là trung điểm của đoạn thẳng AB \(\Rightarrow\) M thuộc đường trung trực của đoạn thẳng AB.
- \(M\notin AB\) (h.b) : Kẻ đoạn thẳng nối M với trung điểm \(I\) của đoạn thẳng AB.
Ta có \(\triangle MAI=\triangle MBI\) (c.c.c) \(\Rightarrow\widehat{I_1}=\widehat{I_2}\). Mặt khác \(\widehat{I_1}+\widehat{I_2}=180^0\Rightarrow\widehat{I_1}=\widehat{I_2}=90^0\). Vậy \(MI\) là đường trung trực của đoạn thẳng AB.
Câu 1 : D
Câu 2 : D
Câu 3 : C
Câu 4 : Tam giác luôn là "tam giác đơn", "tam giác lồi" vì số đo các góc trong luôn nhỏ hơn 1800.
Câu 5 : Sai. Vì không có tam giác nào có trọng tâm nằm ngoài tam giác.
a) Nếu 2 tam giác EFG và IJK có EF = IJ , góc E = góc I , EG = IK thì 2 tam giác đó là hai tam giác bằng nhau ( c.g.c )
b) Tương tự
Điền vào chỗ chấm :
a) Nếu 2 tam giác EFG và IJK có EF = IJ , góc E = góc I , EG = IK thì 2 tam giác ấy bằng nhau.
b) Nếu 2 tam giác XYZ và TUV có góc X = góc V , XY = VU , XZ = VT thì 2 tam giác ấy bằng nhau.
#sadgirl#
Tgiac ABC co AB = AC => tgiac ABC can tai A => goc ABC = goc ACB
a) Xet tgiac ABD va tgiac ACD co:
AB = AC (gt)
goc ABD = goc ACD (cmt)
DB = DC (gt)
suy ra: tgiac ABD = tgiac ACD
b) Tgiac ABC can tai A co AD la trung tuyen
=> AD dong thoi la phan giac
Xet tgiac ABI va tgiac ACI co:
AB = AC (gt)
goc BAI = goc CAI
AI: chung
suy ra: tgiac ABI = tgiac ACI (c.g.c)
=> BI = CI