Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác
c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.
Xét △ ABC và △ BCD:
AB = BC (gt)
∠ B = ∠ C (gt)
BC = CD (gt)
Do đó: △ ABC = △ BCD (c.g.c)
⇒ AC = BD (1)
Xét △ BCD và △ CDE:
BC = CD (gt)
∠ C = ∠ D (gt)
CD = DE (gt)
Do đó: △ BCD = △ CDE (c.g.c) ⇒ BD = CE (2)
Xét △ CDE và △ DEA:
CD = DE (gt)
∠ D = ∠ E (gt)
DE = EA (gt)
Do đó: △ CDE = △ DEA (c.g.c) ⇒ CE = DA (3)
Xét △ DEA và △ EAB:
DE = EA (gt)
∠ E = ∠ A (gt)
EA = AB (gt)
Do đó: △ DEA = △ EAB (c.g.c) ⇒ DA = EB (4)
Từ (1), (2), (3), (4) suy ra: AC = BD = CE = DA = EB
Trong △ ABC ta có RM là đường trung bình
⇒ RM = 1/2 AC (tính chất đường trung bình của tam giác)
Mặt khác, ta có: Trong Δ BCD ta có MN là đường trung bình
⇒ MN = 1/2 BD (tính chất đường trung bình của tam giác)
Trong △ CDE ta có NP là đường trung bình
⇒ NP = 1/2 CE (tính chất đường trung bình của tam giác)
Trong △ DEA ta có PQ là đường trung bình
⇒ PQ = 1/2 DA (tính chất đường trung bình của tam giác)
Trong △ EAB ta có QR là đường trung bình
⇒ QR = 1/2 EB (tính chất đường trung bình của tam giác)
Suy ra: MN = NP = PQ = QR = RM
Ta có: ∠ A = ∠ B = ∠ C = ∠ D = ∠ E = ((5-2 ). 180 0 )/5 = 108 0
△ DPN cân tại D
⇒ ∠ (DPN) = ∠ (DNP) = ( 180 0 - ∠ D )/2 = ( 180 0 - 108 0 )/2 = 36 0
△ CNM cân tại C
⇒ ∠ (CNM) = ∠ (CMN) = ( 180 0 - ∠ D )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (ADN) + ∠ (PNM) + ∠ (CNM) = 180 0
⇒ ∠ (PNM) = 180 0 - ( ∠ (ADN) + ∠ (CNM) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
△ BMR cân tại B
⇒ ∠ (BMR) = ∠ (BRM) = ( 180 0 - ∠ B )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (CMN) + ∠ (BRM) + ∠ (BMR) = 180 0
⇒ ∠ (NMR) = 180 0 - ( ∠ (CMN) + ∠ (BMR) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
△ ARQ cân tại A
⇒ ∠ (ARQ) = ∠ (AQR) = ( 180 0 - ∠ A )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (BRM) + ∠ (MRQ) + ∠ (ARQ) = 180 0
⇒ ∠ (MRQ) = 180 0 - ( ∠ (BRM) + ∠ (ARQ) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
△ QEP cân tại E
⇒ ∠ (EQP) = ∠ (EPQ) = ( 180 0 - ∠ E )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (AQR) + ∠ (RQP) + ∠ (EQP) = 180 0
⇒ ∠ (RQP) = 180 0 - ( ∠ (AQR) + ∠ (EQP) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
∠ (EQP) + ∠ (QPN) + ∠ (DPN) = 180 0
⇒ ∠ (QPN) = 180 0 - ( ∠ (EPQ) + ∠ (DPN) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
Suy ra : ∠ (PNM) = ∠ (NMR) = ∠ (MRQ) = ∠ (RQP) = ∠ (QPN)
Vậy MNPQR là ngũ giác đều.
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
đã 10 năm ko nhận đc đáp án và vẫn mãi ở phần câu hỏi chưa trl
h tui giải thoát cho nhé :)
Bài 2:
A B C M N P
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)
Em tham khảo bài 2 tại link dưới đây nhé.
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
Ta có: M là trung điểm của BC
N là trung điểm của AC nên MN là đường trung bình của Δ ABC ⇒ MN = 1/2 AB
Ta có: P là trung điểm của AB nên MP là đường trung bình của △ ng bình của △ ABC ⇒ NP = 1/2 BC
Mà AB = BC = AC (gt) ⇒ MN = MP = NP. Vậy △ MNP đều