K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

27 tháng 12 2021

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.

7 tháng 8 2019

a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)

mà góc EBF =90 => góc DEB =90    (1)

Chứng minh tương tự với DF//AB

\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\)   (2)

Từ (1) và (2) => tứ giác BEDF là hình chữ nhật

7 tháng 8 2019

a) vì ED//BC và DF//AB

\(\Delta ABC\)vuông tại B

Nên \(DE\perp AB\)và \(DF\perp BC\)

Xét tứ giác BEDF có:

\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)

 Vậy tứ giác BEDF là hình chữ nhật       

a: Ta có: D và E đối xứng nhau qua AB

nên DE vuông góc với AB tại trung điểm của DE

=>M là trung điểm của DE

Ta có: D và F đối xứng nhau qua AC

nên DF vuông góc với AC tại trung điểm của DF

=>N là trung điểm của DF

Xét tứ giác BMDN có 

\(\widehat{BMD}=\widehat{BND}=\widehat{NBM}=90^0\)

Do đó: BMDN là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của AC
DN//AB

Do đó: N là trung điểm của BC

Xét tứ giác BDCF có 

N là trung điểm của BC

N là trung điểm của DF

Do đó:BDCF là hình bình hành

mà DB=DC

nên BDCF là hình thoi

28 tháng 11 2021
Công chúa thủy tế
23 tháng 12 2016

a)

DEA = EAF = AFD = 900

=> AEDF là hình chữ nhật

b)

D là trung điểm của BC

mà DE // AC (DE _I_ AB; AC _I_ AB)

=> E là trung điểm của AB

mà E là trung điểm của MD (M đối xứng D qua AB)

=> ADBM là hình bình hành

mà AB _I_ MD (M đối xứng D qua AB)

=> ADBM là hình thoi

c)

D là trung điểm của BC

mà DF // AB (DF _I_ AC; AB _I_ AC)

=> F là trung điểm của AC

mà F là trung điểm của ND (N đối xứng D qua AC)

=> ADCN là hình bình hành

mà AC _I_ ND (N đối xứng D qua AC)

=> ADCN là hình thoi

=> AN // BC

mà AM // BC (ADBM là hình thoi)

=> M, A, N thẳng hàng

AN = CD (ADCN là hình thoi)

AM = BD (ADBM là hình thoi)

=> CD = BD (D là trung điểm của BC)

=> AM = AN

=> M đối xứng N qua A

d)

AEDF là hình vuông

<=> AD là tia phân giác của BAC

mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)

=> Tam giác ABC vuông cân tại A

21 tháng 12 2016

Hình học lớp 8

a) Tứ giác AEDF có: góc BAC=90\(^o\)

góc DFA=90\(^o\)

góc DEF=90\(^o\)

=> Tứ giác AEDF là hình chữ nhật

b) Ta có: AD=BD( AD là đường trung tuyến ứng với cạnh huyền)

=> Δ ABD cân tại D

mà DE là đường cao( do AB là đường trung trực của DM)

=> DE là đường trung tuyến

=> EA=1/2AB=> EA=3 (cm)

CM tương tự đối với Δ ADC

từ đó suy ra: FA=1/2AC=> FA=4 (cm)

\(S_{AEDF}=EA\cdot FA=3\cdot4=12\left(cm^2\right)\)

c) Tứ giác ADBM có: E là trung điểm của đường chéo AB(cmt)

E là trung điểm của đường chéo DM

=> ADBM là hình bình hành

mà MD vuông góc với AB

=> ADBM là hình thoi

d) Tương tự như tứ giác ADBM thì ADCN cũng là hình thoi

Ta có: MA=AD( 2 cạnh của hình thoi)

NA = AD( 2 cạnh của hình thoi)

=> MA=NA

mà MA=BD

=> NA=BD

Ta có: NA//DC( cạnh đối của hình thoi)

=> NA//BD( vì BD và DC trùng nhau)

tứ giác BAND có: NA=BD

NA//BD

=> BADN là hình bình hành

=> AB=DN

Để ADCN là hình vương

<=> DN=AC

<=> AB=AC( AB=DN)

<=> Δ ABC cân tại A

mà Δ ABC vuông

=> ΔABC vuông cân tại A
Vậy để ADNC là hình vuông thì tam giác ABC phải vuông cân tại A

 

 

 

 

HÌ HÌ KO BIẾT CÓ ĐÚNG KO NƯA, BN XEM LẠI THỬ MK CÓ NHẦM CHỖ NÀO THÌ CỨ HỎI TỰ NHIÊN NHÉ

 

 

 

21 tháng 12 2016

mk ra bài này rồi đợi mk tý nhé

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath