K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Chọn C.

 

 nên

Gọi M, N, P lần lượt là trung điểm của BC, CA, AB

Tam giác ABM đều nên 

Theo định lý Pitago ta có:

Suy ra

20 tháng 2 2019

a) bc=a2 suy ra 2RsinB.2RsinC=(2RsinA)2=4RsinA2

suy ra sinB.sinC=sinA2

còn cái còn lại bạn dựa vào công thức tính diên tích nhé

20 tháng 2 2019

chứng minh ha2=hb.hc

ta có S=\(\dfrac{1}{2}a.h_a=\dfrac{1}{2}bh_b=\dfrac{1}{2}ch_c\)

suy ra : 2S=a.ha=bhb=chc

suy ra : a2ha2=b.c.hb.hc mà a2=b.c

suy ra : ha2=hb.hc

1 tháng 9 2019

Số phần tử của tập hợp A = { k2 + 1 | k εℤ, |k| \(\le\)2} là:

A. 1

B. 2 

C. 3

D. 5

1 tháng 9 2019

Bảo Chi Lâm bạn giải thích giùm đc ko?

a: góc C=90-30=60 độ

Xét ΔBAC vuông tại A có cos B=AB/BC

nên \(BC=\dfrac{2\sqrt{3}}{cos30}=4\left(cm\right)\)

=>AC=2cm

b: Xét ΔbAC vuông tại A có cos B=AB/BC

nên AB/BC=1/2

=>BC=2

=>AC=căn 3

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:

\((a^2+2c^2)(1+2)\geq (a+2c)^2\)

\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)

Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)

Cộng theo vế các BĐT trên thu được:

\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=3$

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.

Áp dụng BĐT AM-GM ta có:

\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)

\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)

\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)

Cộng theo vế:

\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)

\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)

Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)