Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=>\(\frac{IA}{IB}=\frac{ID}{IC}\)⇒IA.IC=IB.ID
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
o D C A B E F x M I K
a) Ta có CD vuông AB => \(\widehat{CDA}=90^o\)
CE vuông AM => \(\widehat{CEA}=90^o\)
Xét tứ giác ADCE có :\(\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)
=> Tứ giác ADCE nội tiếp
b) Tương tự ta chứng minh được tứ giác CDBF nội tiếp
Tứ giác ADCE nội tiếp => \(\widehat{CDE}=\widehat{CAE}\)( cùng chắn cung CE)
Tứ giác CDBF nội tiếp => \(\widehat{CFD}=\widehat{CBD}\)( cùng chắn cung DC)
Mà \(\widehat{CBD}=\widehat{CAE}\)( cùng chắn cung AC của đường tròn (O))
=> \(\widehat{CDE}=\widehat{CFD}\)
Tương tự như trên ta chứng minh được : \(\widehat{DEC}=\widehat{DAC}=\widehat{CBF}=\widehat{FDC}\)
Xét tam giác CDE và tam giác CFD có:
\(\widehat{CDE}=\widehat{CFD}\)
\(\widehat{DEC}=\widehat{FDC}\)
=> \(\Delta CDE=\Delta CFD\)
3) Gọi Cx là tia đối của ta CD
Nối OM. Dễ dàng chứng minh được: OM vuông AB, \(\widehat{AOM}=\widehat{BOM}\)(1)
Ta có: Cx//OM ( cùng vuông góc với AB), CE//OA ( cùng vuông với AM)
=> \(\widehat{AOM}=\widehat{ECx}\)(2)
Cx// OM, CF//OB ( cùng vuông với BM)
=> \(\widehat{BOM}=\widehat{FCx}\)(3)
Từ (1), (2), (3),
=> \(\widehat{ECx}=\widehat{FCx}\)
=> Cx là phân giác góc ECF
4. Ở câu 2 Ta đã chứng minh : \(\widehat{CDE}=\widehat{CBD}\Rightarrow90^o=\widehat{DCB}+\widehat{CBD}=\widehat{CDE}+\widehat{DCB}=\widehat{CDI}+\widehat{DCK}\)
Tương tự như trên chứng minh được: \(\widehat{CDK}+\widehat{ICD}=90^o\)
Xét tứ giác IDKC có: \(\widehat{IDK}+\widehat{ICK}=\widehat{IDC}+\widehat{CDK}+\widehat{ICD}+\widehat{DCK}=\left(\widehat{IDC}+\widehat{DCK}\right)+\left(\widehat{CDK}+\widehat{ICD}\right)\)
\(=90^o+90^o=180^o\)
=> Tứ giác IDKC nội tiếp
=> \(\widehat{IKC}=\widehat{IDC}=\widehat{DBC}\)
=> IK//AB ( 2 góc so le trong)
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
1/Xét tứ giác MIHC có:
góc MIC=90 độ (MI vuông góc với AC tại I)(1)
góc MHC=90 độ (MH vuông góc với BC tại H)(2)
Từ (1) và (2)=> tứ giác MIHC nội tiếp
(tứ giác có 2 đỉnh kề nhau cùng nhìn cạnh chứa 2 đỉnh còn lại dưới một góc 90 độ)
=> góc IHM=góc ICM (cùng chắn cung IM)(đpcm)
2/Tứ giác ABCM nội tiếp (O)
=> góc MCB= góc MAK (3)
Tứ giác MIHC nội tiếp (c/m trên)
=>góc MCB= góc MIK (4)
Từ (3) và (4)=> góc MAK= góc MIK
=> Tứ giác AIMK nội tiếp
(tứ giác có 2 đỉnh kề nhau cùng nhìn cạnh chứa 2 đỉnh còn lại dưới 1 góc an-pha)
=>góc AKM+góc AIM=180 độ
=>góc AKM=90 độ (vì góc AIM= 90 độ)
=>MK vuông góc với BK tại K( đpcm)
Còn câu 3 và 4 đề ko có D và F nên mk ko c/m dc
chị ơi! cái này em chưa học nên chưa biết trả lời lời làm sao mong chị thông cảm
a) Xét tứ giác DFEC có
\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)
\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE
Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)