K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

a, Theo định lí Pytago tam giác ABH : \(AB^2=AH^2+BH^2\)(1)

Theo định lí Pytago tam giác ACH : \(AC^2=AH^2+AC^2\)(2) 

Lấy (1) - (2) : \(AB^2-AC^2=AH^2+BH^2-AH^2-HC^2\)

\(\Leftrightarrow AB^2-AC^2=BH^2-HC^2\Leftrightarrow AB^2+HC^2=BH^2+AC^2\)

b, Ta có : \(AH^2=AM.AB\)( hệ thức lượng ) (1) 

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3) 

(3) => \(\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)

Vậy tam giác AMN ~ tam giác ACB ( c.g.c ) 

20 tháng 9 2021
a) tam giác ABH là tam giác vuông nên AB^2 - BH^2 = AH (1) chứng minh tương tự với tam giác ACH suy ra AC^2 - CH^2 = AH^2 (2) Từ (1) và (2) ta suy ra AB^2 - BH^2 = AC^2 - CH^2 câu b mình chưa biết làm nha :))

a,DoΔvuông AHC có:

AH2=AE.AC (1)

Δ vuông AHB có:

AH2=AD.AB (2) 

Từ (1) và (2) :

AE.AC =AD.AB

b, Xest ΔAED và ΔABC có:

BAC^chung

AE.AC=AD.AB (câu a)

=> tam giác AED đồng dạng với tam giác ABC ( c-g-c)

17 tháng 9 2021

a) ΔABH vuông tại H có đường cao HD

=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)

ΔAHC vuông tại H có đường cao HE

=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)

Từ (1) và (2) => AD.AB = AE.AC (=AH2)

câu b) bn tự làm nhé

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AN}=\dfrac{AC}{AB}=\dfrac{3}{2}\)