K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

24 tháng 2 2019

A B C M N O H K 1 2 1 2

Cm: a) Ta có: góc ABC + góc ABM = 1800 (kề bù)

                  góc ACN + góc ACB = 1800 (kề bù)

và góc ABC = góc ACB (vì t/giác ABC cân tạo A)

=> góc ABM = góc ACN

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

    góc ABM = góc ACN (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) ko đề

c) Xét t/giác AHB và t/giác AKC

có  góc H1 = góc K1 = 900 (gt)

AB = AC (gt)

góc HAB = góc KAC (vì t/giác ABM = t/giác ACN)

=> t/giác AHB = t/giác AKC (ch - gn)

=> AH = AK (hai cạnh tương ứng)

Xét t/giác AHO và t/giác AKO

có AH = AK (cmt)

  góc H1 = góc K1 = 900 (gt)

  AO : chung

=> t/giác AHO = t/giác AKO (ch - cgv)

=> HO = KO(hai cạnh tương ứng)

Mà HB + BO = HO

  KC + CO = OK

và HB = KC (vì t/giác AHB = t/giác AKC)

=> BO = CO 

=> t/giác OBC là t/giác cân tại O

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .a. Chứng minh tam giác ABM = tam giác ACNb. Kẻ BH vuông góc AM; CK vuông góc AN (H...
Đọc tiếp

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng

2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .
a. Chứng minh tam giác ABM = tam giác ACN
b. Kẻ BH vuông góc AM; CK vuông góc AN (H thuộc AM; K thuộc AN ). Chứng minh AH = AK.
c. Gọi O là giao điểm của BH và KC. Tam giác OBC là tam giác gì ? Vì sao ?

3. Cho tam giác ABD, có góc B = 2 góc D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của BA lấy BE=BH. Đường thẳng EH cắt AD tại F. Chứng minh FH=FA=FD

4. Cho góc nhọn  \(\widehat{xOy}\) . Gọi I là một điểm thuộc tia phân giác của \(\widehat{xOy}\). Kẻ IA \(\perp\) Ox (Điểm A thuộc tia Ox ) và IB \(\perp\)  Oy (Điểm B thuộc tia Oy )

a. Chứng minh IA = IB

b. Cho biết OI = 10cm, AI = 6cm. Tính OA

c. Gọi K là giao điểm của  BI và Ox và M là giao điểm của AI với Oy. Chứng minh ba điểm B, K, C thẳng hàng

 

 

1
11 tháng 2 2016

Câu 1 trước

29 tháng 12 2018

Vẽ hình, viết GT, KL và trình bày cách làm giúp mk nhé!!!

25 tháng 1 2020

Hình bạn tự vẽ nha :))

a)* Ta có: \(\Delta ABC\)cân tại A <=> AB=AC

\(\hept{\begin{cases}AM=AB+MB\\AN=AC+NC\end{cases}\Rightarrow AM=AN}\)(do \(AB=AC;MB=NC\))

\(\Rightarrow\Delta AMN\)cân tại A

Từ \(\Delta ABC\)cân tại A, có: \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(1)

Từ \(\Delta AMN\)cân tại A, có: \(\widehat{AMN}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra: \(\widehat{ABC}=\widehat{AMN}\)

\(\Rightarrow MN//BC\)(2 góc đồng vị bằng nhau)

b) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

\(\hept{\begin{cases}AB=AC\\AIchung\\IB=IC\end{cases}\Rightarrow\Delta ABI=\Delta}ACI\left(ccc\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)      

\(\Rightarrow AI\)là p/giác của \(B\widehat{A}C\) (3)

Tương tự, ta có: \(\widehat{MAE}=\widehat{NAE}\)

\(\Rightarrow AE\)là p/ giác của \(\widehat{BAC}\)(4)

Từ (3) và (4), ta có: A,I,E thẳng hàng

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

Bài làm

Vì ΔABCΔABC cân nên ⇒Bˆ=C1ˆ⇒B^=C1^

Mà C1ˆ=C2ˆC1^=C2^ ( 2 góc đối đỉnh ) ⇒Bˆ=C2ˆ⇒B^=C2^

Xét ΔABDΔABD vàΔICEΔICE có

CI=CA(gt)Bˆ=Cˆ2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)CI=CA(gt)B^=C^2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)

2) Xét ΔBMDΔBMD và ΔNECΔNEC có:

BMDˆ=CNEˆ=(900)Bˆ=C2ˆ(cmt)BD=CE⇒ΔBMD=ΔNECBMD^=CNE^=(900)B^=C2^(cmt)BD=CE⇒ΔBMD=ΔNEC ( cạnh huyền - góc nhọn)

⇒BM=CN⇒BM=CN ( 2 cạnh tương ứng )

                                 ~Học tốt!~