Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ dàng chứng minh \(\Delta ABN=\Delta ACM\left(c.c.c\right)\)
Suy ra AM = AN. Mặt khác tam giác giác ABC cân tại A có AH là đường trung tuyến xuất phát từ đỉnh nên AH cũng là đường trung trực. Do đó \(AH\perp BC\)
b)Do H là trung điểm BC nên HB = BC/ 2 = 3
Mặt khác BM = MN = NC và BM + MN + NC = BC nên suy ra BM = BC/3 = 2
Mà ta có HM = BH - BM = 3 - 2 = 1 (1)
Áp dụng định lí Pythagoras vào tam giác AHB vuông tại H (Chứng minh trên) suy ra \(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\) (2)
Từ (1) và (2) áp dụng định lí Pythagoras vào tam giác AHM vuông tại H sẽ suy ra AM.
c) Mình thấy nó sao sao ý. Vẽ hình ra 3 góc đó bằng nhau mà (đã vẽ hình chính xác). Bạn xem lại đề để mình còn biết đường suy nghĩ nha!
Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
A B C M N D
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
bạn tự vẽ hình ạ
Xét tam giác BAM và tam giác MAN có:
BM=NM
góc BAM=góc NAm
AM:chung
suy ra:2 tam giác bằng nhau(C.G.C)
Suy ra góc BAM=gócMAN
Nhớ vote 5 sao nha
Cm tam giác bằng nhau sai rồi nhé