Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)
\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)
Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)
Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV
=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là
\(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)
\(m_t = m_{\alpha}+ m_{Al}= 30,97585u.\)
\(m_s = m_P+ m_n = 30,97872u.\)
\(m_t < m_s\), phản ứng là thu năng lượng.
Năng lượng thu vào là
\(E= (m_s-m_t)c^2 = 2,87.10^{-3}uc^2= 2,87.10^{-3}931 MeV/c^2.c^2 = 2,67197MeV \)
Đổi \(1 MeV = 10^6.1,6.10^{-19}J \)
=> \(2,67197 MeV= 4,275152 .10^{-13}J.\)
Tóm lại thu năng lượng \(2,67197 MeV\) hoặc thu \(4,275152 .10^{-13}J.\)
mt=ma+mAL=30,97585u
ms=mp+mn=30,97872u
mt<ms,PHẢN ỨNG LÀ THU NĂNG LƯỢNG
NĂNG LƯỢNG THU VÀO LÀ:
E=(ms-mt)c2=2,87.10-3uc2=2,87.10-3931MeV/c2.c2=2,67197 MeV
Đổi 1 MeV=106.1,6.10-19J
Suy ra:2,67197MeV=4,275152.10-3J
Đáp số:2,67197MeV hoặc 4,275152.10-13J
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
\(_0^1n + _3^6 Li \rightarrow X + \alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)
P P P He X n
Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)
=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)
=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)
=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)
Từ (1) và (2) giải hệ phương trình
\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)
Chọn B