K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: CM ⊥ CD

DN ⊥ CD

Suy ra: CM // DN

Kẻ OI ⊥ CD

Suy ra: OI // CM // DN

Ta có: IC = ID (đường kính dây cung)

Suy ra: OM = ON    (1)

Mà: AM + OM = ON + BN (= R)    (2)

Từ (1) và (2) suy ra: AM = BN

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

23 tháng 6 2017

Đường kính và dây của đường tròn

12 tháng 6 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MC // ND (gt)

Suy ra tứ giác MCDN là hình thang

Lại có: OM + AM = ON + BN (= R)

Mà AM = BN (gt)

Suy ra: OM = ON

Kẻ OI ⊥ CD     (3)

Suy ra: IC = ID (đường kính dây cung)

Khi đó OI là đường trung bình của hình thang ACDN

Suy ra: OI // MC // ND     (4)

Từ (3) và (4) suy ra: MC ⊥ CD, ND ⊥ CD.

3 tháng 10 2021

bạn god rick giải dài nhưng chưa chắc là đúng

a) Xét tứ giác AOMC có

ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối

ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)

hay ˆMAB=ˆOCDMAB^=OCD^

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^

Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù) 

mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)

và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)

nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800

⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900

mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)

nên ˆCOD=900COD^=900

Xét ΔCOD có ˆCOD=900COD^=900(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

ˆMAB=ˆOCDMAB^=OCD^(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)

hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)

28 tháng 9 2019

giúp với ạ e đang cần gấp k biết làm thế nào ??