K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó 2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\) 3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60....
Đọc tiếp

1,cho lăng trụ đứng ABC. A'B'C'; biết AA'= a, AB= 2a; AC= 3a và góc BAC = 30. Thể tích của khối lăng trụ đó

2, Cho lăng trụ đứng ABCD.A'B'C'D' có cạnh bên bằng a, đáy ABCD là hình thang vuông tại A và B; biết BC=2AB=2AD=2a. Thể tích khối lăng trụ là A, \(a^3\) B, \(\dfrac{a^3}{2}\) C, \(2a^3\) D, \(\dfrac{3a^3}{2}\)

3,cho lăng trụ ABC.A'B"C' có đáy là tam giác vuông tại B, BC=a, góc ACB= 60. Góc giữa A'B và (ABC) bằng 30. Tính thể tích khối lăng trụ đó

4,hình chóp có đường cao bằng 12cm, đáy là tam giác ddeuf cạnh bằng 4cm. Tính thể tích

5,Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mp (ABCD) là điểm H trên cạnh AD sao cho AH= 2HD, (SBC) hợp với đáy một góc 60. Tính thể tích V của khối chóp S.ABCD A. \(\dfrac{a^3\sqrt{3}}{9}\) B, \(\dfrac{2a^3\sqrt{3}}{3}\) C, \(a^3\sqrt{3}\) D, \(\dfrac{a^3\sqrt{3}}{3}\)

0
25 tháng 6 2016

không biết vẽ hình hơ 

nhưng biết cách làm 

 

xét tam giác AA'B'  vuông tại A

AA'= căn (  (a căn 3)- a2)=a*(3a2+1)

 vậy  V = a*(3a2 +1) *  (1/2 )*( (căn 3 *a)/2) *a ( chiều cao * diện tích tam gaic1 abc )

b) thua 

10 tháng 7 2016

Đáy ABC vuông cân tại B thì ACB=BAC=45\(^0\)chứ bạn. 

Bạn có gõ nhầm đề không?

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\) Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\) A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V =...
Đọc tiếp

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức

A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\)

Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\)

A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 3 : Tính thể tích V của khối lăng trụ đứng có đáy là tam giác vuông cân có cạnh góc vuông bằng \(a\sqrt{2}\) , cạnh bên của lăng trụ bằng 5a

A. V = 5a3 B. V = \(2\sqrt{2}a^3\) C. V = \(\frac{5}{3}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 4 : Tính thể tích V của khối lăng trụ tam giác đều . Biết cạnh đáy bằng \(a\sqrt{3}\) và đường chéo của một mặt bên bằng 2a

A. V = \(\sqrt{3}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 5 : Tính thể tích V của khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều . Biết cạnh đáy bằng \(\alpha\) và góc giữa (A'BC) với mặt phẳng (ABC) bằng 600

A. V = \(\frac{3\sqrt{3}}{8}a^3\) B. V = \(\frac{3\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

3
NV
22 tháng 8 2020

5.

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\)

\(\Rightarrow BC\perp\left(A'AM\right)\)

\(\Rightarrow\widehat{A'MA}\) là góc giữa (A'BC) và (ABC)

\(\Rightarrow\widehat{A'MA}=60^0\)

\(AM=\frac{a\sqrt{3}}{2}\Rightarrow A'A=AM.tan60^0=\frac{3a}{2}\)

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=B.A'A=\frac{3\sqrt{3}}{8}a^3\)

NV
22 tháng 8 2020

1.

\(V=Bh\)

2.

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=Bh=\frac{a^2\sqrt{3}}{4}.a\sqrt{6}=\frac{3\sqrt{2}}{4}a^3\)

3.

\(B=\frac{1}{2}\left(a\sqrt{2}\right)^2=a^2\Rightarrow V=Bh=a^2.5a=5a^3\)

4.

\(h=\sqrt{\left(2a\right)^2-\left(a\sqrt{3}\right)^2}=a\)

\(B=\frac{\left(a\sqrt{3}\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{4}a^2\)

\(V=Bh=\frac{3\sqrt{3}}{4}a^3\)

2 tháng 4 2016

A B C B' C' A' E M

Từ giả thiết ta suy ra tam giác ABC là tam giác vuông cân tại B

Thể tích của khối lăng trụ là \(V_{ABC.A'B'C'}=AA'.BC=a\sqrt{2.}\frac{1}{2}a^2=\frac{\sqrt{2}}{2}a^3\)

Gọi E là trung điểm của BB'. Khi đó mặt phẳng (AME) song song với B'C nên khoảng cách giữa 2 đường thẳng AM, B'C bằng khoảng cách giữa B'C và mặt phẳng (AME)

Nhận thấy, khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME)

Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do đó tứ diện BAME có BA, BM, BE đôi một vuông góc với nhau nên :

\(\frac{1}{h^2}=\frac{1}{BA^2}+\frac{1}{BM^2}+\frac{1}{BE^2}\Rightarrow\frac{1}{h^2}=\frac{1}{a^2}+\frac{4}{a^2}+\frac{2}{a^2}=\frac{7}{a^2}\)

\(\Rightarrow h=\frac{a\sqrt{7}}{7}\)

Vậy khoảng cách giữa 2 đường thẳng B'C và AM bằng \(\frac{a\sqrt{7}}{7}\)

Chọn C

24 tháng 1 2022

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)

Chọn A