K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

Gọi H là trung điểm BC, H' là trung điểm B'C' 

\(\left\{{}\begin{matrix}AH\perp BC\\AH\perp HH'\left(HH'\cap BC=\left\{H\right\}\right)\end{matrix}\right.\Rightarrow AH\perp\left(BCC'B'\right)\)

\(\widehat{\left(ABC\right),\left(AB'C'\right)=60^0\Rightarrow\widehat{H'AH}=60^0}\)

\(AH=\dfrac{a}{2}\Rightarrow HH'=AH\tan60^0=\dfrac{a\sqrt{3}}{2}\Rightarrow V=S_{ABC}.HH'=\dfrac{1}{2}.\sqrt{3}a.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{2}=\dfrac{3a^3}{8}\)

24 tháng 7 2023

Sao biết (ABC),(AB′C′)=60o⇒ˆH′AH=60o bạn ơi

12 tháng 3 2022

tui ne2

19 tháng 7 2018

Đáp án B

7 tháng 12 2017

Đáp án D.

25 tháng 12 2017

\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)

=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)

=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)

=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)

=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)

20 tháng 5 2017

Khối đa diện

Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN

Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng \(\dfrac{a}{2}\)

Do đó diện tích của nó bằng \(\dfrac{3\sqrt{3}}{8}a^2\)

20 tháng 2 2019

Chọn A.

Ta có:

14 tháng 4 2018