Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Đáp án D.
Phương pháp: Tính góc giữa mặt phẳng (SAB) và (ABCD).
Cách giải: Dễ thấy 2 hình chóp S.ABCD và S’.ABCD là các hình chóp tứ giác đều.
Gọi E là trung điểm của AB ta có:
=> ((SAB);(ABCD)) = (SE;OE) = SEO = α
Ta có:
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Đáp án A
Do SO vuông góc với (ABCD) nên hình chiếu của SA trên mặt phẳng (ABCD) là AO, do đó góc giữa SA và (ABCD) chính là góc giữa SA và AO, hay S A O ^ = 45 0 . Do ABCD là hình vuông cạnh 2a nên: A O = 1 2 A C = 1 2 .2 a 2 = 2 a
Do Δ S A O vuông tại O nên tan S A O ^ = S O A O
Độ dài đoạn thẳng SO là: S O = A O tan S A O ^ = a 2 tan 45 0 = 2 a