Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
a) Gọi AC∩MN=G
Do MN//AB//DC theo định lý Ta-let ta có:
NB/NC=MA/MD=1/3
b) Do MG//DC ⇒AM/AD=MG/DC=1/4
MG=DC/3=5
Do GN//AB⇒CN/CB=GN/AB=3/4
suy ra GN=3AB/4=6
⇒MN=GM+GN=11cm
( Hình vẽ thì mượn tạm nhá :33 )
a) Ta gọi giao điểm của AC và MN là G. \(\Rightarrow\hept{\begin{cases}MG//DC//AB\\NG//DC//AB\end{cases}}\)
Ta thấy : \(MD=3MA\Rightarrow\frac{AM}{MD}=\frac{1}{3}\)
Áp dụng định lý Talet ta được :
+) \(MG//DC\Rightarrow\frac{MA}{MD}=\frac{AG}{GC}=\frac{1}{3}\) (1)
+) \(NG//AB\Rightarrow\frac{AG}{GC}=\frac{BN}{NC}=\frac{1}{3}\) ( do (1) )
Vậy : \(\frac{NP}{NC}=\frac{1}{3}\)
Phần b) Bạn biết làm rồi nên mình không trình bày nữa nhé !
Cc
bần tăng làm thí chủ sợ quá