Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi H là trung điểm của AB thì S H ⊥ A B C D ⇒ S H = a 2 .
Khoảng cách từ H đến BC, CD, DA đều là a 2 3 ⇒ S A B C D = 1 2 . a 2 3 . 9 a − a = 2 a 2 3 .
Vậy thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 2 . 2 a 2 3 = a 3 3 9 .
Đáp án A
Ta có
V ' = 1 3 d M ; A B C C . S A B C = 1 3 . 1 2 d S ; A B C D . 1 2 S A B C D V ' = 1 3 d G ; A B D . S A B D = 1 3 . 1 3 d S ; A B C D . 1 2 S A B C D
Do đó V V ' = 3 2
Đáp án C
Ta có
S Q P C N = S A B C D − S A B N Q − S Δ P Q D = S A B C D − 1 2 S A B C D − 1 8 S A B C D = 3 8 S A B C D .
Khi đó
V M . Q P C N = 1 3 . d M ; A B C D . S Q P C N = 1 3 . 1 2 . d S ; A B C D . 3 8 . S A B C D = 3 16 . 1 3 . d S ; A B C D . S A B C D = 3 16 . V 0 .
Vậy V = 3 16 V 0 .
Đáp án C
Bài toán sử dụng bổ đề sau: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) bất kì cắt các cạnh SA, SB, SC, SD lần lượt tại các điểm A’, B’, C’, D’ với tỉ số
S A ' S A = x ; S B ' S B = y ; S C ' S C = z ; S D ' S D = t thì ta có đẳng thức
1 x + 1 z = 1 y + 1 t và tỉ số
V S . A ' B ' C ' D ' V S . A B C D = x y z t 4 1 x + 1 y + 1 z + 1 t
Áp dụng vào bài toán
đặt u = S M S B , v = S N S D ta có
1 u + 1 v = S A S A ' + S C S I = 1 1 + 1 2 3 = 5 2 ≥ 2 u v ≥ 16 25 ⇒ V ' V = u v .1. 2 3 4 1 u + 1 v + 1 1 + 1 2 3 = 5 u v 6 ≥ 8 15
Đáp án C
Ta có: S Q P C N = S A B C D − S A B N Q − S Δ P Q D
= S A B C D − 1 2 S A B C D − 1 8 S A B C D = 3 8 S A B C D
Khi đó: V M . Q P C N = 1 3 d M ; A B C D .
S Q P C N = 1 3 . 1 2 d S ; A B C D . 3 8 S A B C D
= 3 16 . 1 3 d S ; A B C D . S A B C D = 3 16 V 0 .
Vậy V = 3 16 V 0 .
Đáp án A
Coi hình chóp S.ABCD có đáy là hình vuông cạnh 1
Tứ giác MBCN là hình thang vuông có B M = 1 2 , C N = 2 3
⇒ Diện tích hình thang MBCN là S M B C N = 1 2 B C B M + C N = 7 12
Khi đó:
V P . M B C N = 1 3 d P ; A B C D . S M B C N = 1 3 . 1 2 d S ; A B C D . 7 12 S A B C D = 7 24 . 1 3 d S ; A B C D . S A B C D = 7 24 V S . A B C D = 7 24 .48 = 14
Đáp án là A