K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

7 tháng 6 2017

Đáp án D.

Phương pháp: 

- Xác định chân đường cao của đỉnh S đến mặt phẳng đáy.

- Tính thể tích khối chóp: V = 1 3 S h  

Cách giải:

Gọi I, J lần lượt là trung điểm của AB, CD. 

Tam giác SAB đều, tam giác SCD cân tại S nên S I ⊥ A B ,    S J ⊥ C D  

Mà A B / / C D ⇒ A B ,   C D ⊥ S IJ  

Dựng S H ⊥ I J ,    H ∈ I J ⇒ S H ⊥ A B C D  (do S H ⊥ I J  và S H ⊂ SIJ ⊥ C D )

Trong (ABCD), kẻ

B M ⊥ A H ,    M ∈ C D , A H ∩ B M = T .

Khi đó, điểm M thỏa mãn điều kiện đề bài.

+) Δ S A B  đều, cạnh a ⇒ S I = a 3 2  

+) Δ S C D  vuông cân tại S,

C D = a ⇒ S J = C D 2 = a 2  

+) ABCD là hình vuông cạnh a

⇒ IJ = a  

Tam giac SIJ có:

IJ 2 = S I 2 + S J 2 ⇒ Δ S I J  vuông tại S.

S H ⊥ IJ ⇒ SI 2 = I H . IJ ⇒ a 3 2 2 = I H . a ⇒ I H = 3 a 4  

1 S H 2 = 1 S I 2 + 1 S J 2 = 1 a 3 2 2 + 1 a 2 2 = 16 3 a 2 ⇒ S H = a 3 4  

Dễ dàng chứng minh Δ A I H  đồng dạng tam giác

Δ B C M ⇒ S A I H S B M C = A I B C 2 = 1 4 ⇒ S B C M = 4 S A I H = 4. 1 2 . a 2 . 3 a 4 = 3 a 2 4  

S B D M = S B C M − S B C D = 3 4 a 2 − 1 2 a 2 = a 2 4  

Thể tích khối chóp S.BDM:

V S . B D M = 1 3 . S H . S B D M = 1 3 . a 3 4 . a 2 4 = 3 a 3 48  

15 tháng 6 2018

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

7 tháng 2 2017

a d e m n b c i h

a, tam giác ade cân a

=> góc d = góc e và ad = ae

tam giác adb = tam giác aec ( cgc)

=> ab=ac

=> tam giác abc cân a

b, tam giác bmd vuông m và tam giác cne vuông n

góc m = góc n =90 độ

góc d = góc e

bd = ce

=> bmd = cne (ch-gn)

=> bm = cn

c, có tam giác bmd = tam giác cne

=> góc mbd = góc nce

mà góc cbi đối đỉnh góc mbd, bci đối đỉnh nce

=> góc cbi = góc bci

=> tam giác ibc cân i

d, lây h là trung điểm bc

tam giác abc cân a có ah là đường trung tuyến úng với bc

=> ah vừa là trung tuyến vừa là đường cao ứng với bc

cmtt với ibc => ih vừa là trung tuyến vừa là đường cao ứng với bc

=> a,i,h thẳng hàng

=> ai vừa trung tuyến vừa là đường cao tam giác abc cân a

=> đpcm

30 tháng 12 2018

Bn ghi rõ ràng các góc, tam giác là chữ in hoa bn nhé ok

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra