K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

Chọn A.

Gắn tọa độ Oxyz, với A(0;0;0), B(1;0;0), D(0;3;0), S(0;0;1)

Khi đó C ( 1 ; 3 ; 0 ) ⇒  Trung điểm M của BC là M ( 1 ; 3 2 ; 0 ) .  

Ta có

SM → = ( 1 ; 3 2 ; - 1 ) , SD →   = ( 0 ; 3 ; - 1 ) ⇒ [ SM →   ; SD → ] = ( 3 2 ; 1 ; 3 ) .  

Suy ra n ⃗ ( SDM ) = ( 3 2 ; 1 ; 3 )  mà n ⃗ ( ABCD ) = n ⃗ ( Oxy ) = ( 0 ; 0 ; 1 ) ,  

ta được

cos ( SDM ^ ) ;   ( ABCD )   =   n → ( SDM ) . n → ( ABCD ) n → ( SDM ) . n → ( ABCD ) = 6 7 .

6 tháng 11 2017

 phụ nhau nên  D I A ^ = 90 °

15 tháng 4 2017

Đáp án B

 

Gọi H là trung điểm của cạnh AB. Khi đó  S H ⊥ ( A B C D )

Ta có S H ⊥ A B ; A B ⊥ H N ; H N ⊥ S H và  S H = 3

Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó:

B ( 1 ; 0 ; 0 ) ; A ( - 1 ; 0 ; 0 ) ; N ( 0 ; 2 3 ; 0 ) ; C ( 1 ; 2 3 ; 0 ) ; D ( - 1 ; 2 3 ; 0 ) ; S ( 0 ; 0 ; 3 ) ; M ( - 1 2 ; 0 ; 3 2 ) ; P ( 1 ; 3 ; 0 )  

Mặt phẳng (SCD) nhận n 1 → = - 3 6 C D   → , S C   → = 0 ; 1 ; 2 làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận n 2 → = - 2 3 3 M N   → , M P   → = 3 ; 1 ; 5 làm một vectơ pháp tuyến.

Gọi  ∅ là góc tạo bởi hai mặt phẳng (MNP) và (SCD) thì

cos ∅ = n 1 → . n 2 → n 1 → . n 2 → = 11 145 145

 

23 tháng 1 2017

Chọn đáp án B.

Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia OyS thuộc tia Oz. Khi đó: 

15 tháng 11 2018

Đáp án C

Gọi O là trung điểm của SD. Ta có:

A D = D M = a 2  và A D = 2 a ⇒ A M ⊥ D M  

Lại có D M ⊥ S A ⇒ D M ⊥ S A M ⇒ D M ⊥ S M  

Vì tam giác SAD vuông tại A nên OS = OD = OA. Tương tự với tam giác SMD nên OS = OD = OM.

Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ADM. Khi đó R = S D 2 = S A 2 + D A 2 2 = a 6 2 .

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

21 tháng 5 2019

10 tháng 11 2019

Đáp án A

Gọi N là trung điểm của MD, khi đó N là tâm đường tròn ngoại tiếp tam giác vuông ADM.

Dựng đường thẳng Δ đi qua N và song song với SAΔ là trục đường tròn ngoại tiếp tam giác ADM.

Dựng mặt phẳng trung trực (P) của SA, P ∩ Δ = I , khi đó I là tâm của mặt cầu ngoại tiếp hình chóp SADM, bán kính R = IA .

28 tháng 7 2018

Chọn đáp án B.

14 tháng 7 2018