K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

S o B H A D G d H' C K

Câu a bạn tự tính nhé!

Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\) 

Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.

Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\) 

Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)

 

 

27 tháng 4 2017

Chọn C

14 tháng 8 2016

Kẻ SH vuông góc với BC tại H => SH vuông góc với (ABC) 
Kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N 
Ta có góc SMH = góc SNH = 60 độ 
Dễ thấy tam giác SHM = tam giác SHN => HM = HN 
Ta có HM = HB.sin 30 = 1/2 HB hay HB = 2 HM 
HN = HC.sin 60 = HC.căn 3 /2 => HC = 2/căn 3.HN = 2/căn 3 .HM 
=> BC = a = HB + HC = ( 2 + 2/căn 3).HM 
=> HM = a/(2 + 2/căn 3) = a.căn 3 /(2+ 2.căn 3) 
=> SH = HM.tan 60 = 3a/(2+2.căn 3) 
Có AB = BC/2 = a/2 
AC = BC.căn 3/2 = a.căn 3/2 
S(ABC) = 1/2.AB.AC = 1/8.a^2.căn 3 
=> V(SABC) = 1/3.3a/(2+2.căn 3) . 1/8.a^2.căn 3 = a^3.căn 3 /[16.(1+ căn 3)]

25 tháng 9 2017

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

28 tháng 4 2017

29 tháng 3 2016

B A C H I S

Gọi H là trung điểm của BC, suy ra \(SH\perp BC\). Mà (SBC) vuông góc với (ABC) theo giao tuyến BC, nên \(SH\perp\left(ABC\right)\)

Ta có : \(BC=a\Rightarrow SH=\frac{a\sqrt{3}}{2}\)\(AC=BC\sin30^0=\frac{a}{2}\)

\(AB=BC.\cos30^0=\frac{a\sqrt{3}}{2}\)

Do đó  \(V_{S.ABC}=\frac{1}{6}SH.AB.AC=\frac{a^3}{16}\)

Tam giác ABC vuông tại A và H là trung điểm của BC nên \(HA=HB\). Mà \(SH\perp\left(ABC\right)\), suy ra \(SA=SB=a\). Gọi I là trung điểm của AB, suy ra \(SI\perp AB\) 

Do đó \(SI=\sqrt{SB^2-\frac{AB^2}{4}}=\frac{a\sqrt{13}}{4}\)

Suy ra \(d\left(C;\left(SAB\right)\right)=\frac{3V_{S.ABC}}{S_{SAB}}=\frac{6V_{S.ABC}}{SI.AB}=\frac{a\sqrt{39}}{13}\)

30 tháng 4 2019

Chọn B