Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
\(A+B=a+b-5-b-c+1=a-c-4\)
\(A+B+C+D=a-c-4+b-c-4+b-a=2b-2c\)
\(A-B+C-D=a+b-5+b+c-1+b-c-4+a-b\)
\(A-B+C-D=2a+2b-10\)
\(A+B=a-c-4\)
\(C-D=b-c-4-b+a=a-c-4\)
\(A+B=C-D\)
Đáp án D.
Gọi B',C' là trung điểm SB,SC ⇒ Thiết diện là Δ A B ' C '
Ta có S A ' B ' C ' = 1 2 A B ' 2 . A C ' 2 - A B ' → . A C ' → 2
A B ' → = 1 2 S B → - S A → ⇒ A B ' 2 = 1 4 S B 2 + S A 2 - S A → . S B → = a 2 4 5 - 4 cos α
Tương tự ta có A B ' → . A C ' → = a 2 4 4 - 3 cos α
Vậy S A B ' C ' = 1 2 a 4 16 5 - 4 cos α 2 - a 4 16 4 - 3 cos α 2 = a 2 8 7 cos 2 α - 16 cos α + 9
Đáp án D.
Trên các tia SB; SC lần lượt lấy các điểm B’; C’ sao cho SB’ = SC’ = SA = a.