Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp giải:
Dựng hình, xác định góc và sử dụng hệ thức lượng trong tam giác để tính tang
Lời giải:
Vì SA ⊥ (ABCD) => AC là hình chiếu của SC trên (ABCD)
Suy ra SC; (ABCD) = (SC; AC) = SCA = α(00; 900)
Tam giác SAC vuông tại A, có
Vậy tan góc giữa đường thẳng SC và mặt phẳng (ABCD) là 1 2
Đáp án A.
Phương pháp
Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đáy.
Cách giải
S C ; A B C D = S C ; A C = S C A
ABCD là hình vuông cạnh a ⇒ A C = a 2
Xét tam giác vuông SAC có:
tan = S A A C = 2 a a 2 = 2
Đáp án A
Ta có B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ S A B
Ta có S C ∩ S A B = S ; B C ⊥ S A B
⇒ S C ; S A B ^ = S C , S B ^ = B S C ^
Ta có S B = S A 2 + A B 2 = a 3
Ta có tan B S C ^ = B C S B = a a 3 = 1 3 ⇒ B S C ^ = 30 ° .
Đáp án D.
Trong mp A B C D gọi O là giao điểm của AC và BD.
Trong mặt phẳng S A C , qua O kẻ đường thẳng vuông góc với SC, cắt SC tại H.
Ta có B D ⊥ A C B D ⊥ S A ⇒ B D ⊥ S A C ⇒ B D ⊥ O H ⇒ O H là đường vuông góc chung của hai đường thẳng SC và BD.
Lại có A C = a 2 ⇒ C S = S A 2 + A C 2 = a 2 + 2 a 2 = 3 a 2 = a 3 .
Hai tam giác COH và CSA đồng dạng với nhau. Suy ra
O H S A = C O C S ⇒ O H = S A . C O C S = a . a 2 2 a 3 = a 6 6
Vậy khoảng cách giữa hai đường thẳng SC và BD bằng a 6 6 .
Chọn đáp án D.
Đáp án A
Ta có C B ⊥ A B C B ⊥ S A ⇒ C B ⊥ ( S A B )
Do đó S C ; S A B ^ = C S B ^ = α
⇒ S B = a tan α = 5 a 10 ⇒ S A = S B 2 - A B 2 = a 6 2
Ta có S O ; A B C D ^ = S O A ^ trong đó t a n S C A ^ = S A O A = a 6 2 a 2 2 = 3 .
Đáp án D
Phương pháp:
Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).
Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.
Cách giải:
Gọi H là trung điểm của AB => OH//AD
ABCD là hình vuông => AD ⊥ AB; OH ⊥ AB
Mà OH ⊥ SA, (vì SA ⊥ (ABCD))
=> OH ⊥ (SAB)
=>SH là hình chiếu vuông góc của SO trên mặt phẳng (SAB)
=> (SO,(SAB)) = (SO,SH) = HSO
Ta có: OH là đường trung bình của tam giác ABD
Tam giác SAH vuông tại A
Tam giác SHO vuông tại H:
Chọn đáp án D
Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D
Suy ra
⇒ S H C vuông cân tại H.
Do ∆ B H C vuông tại H nên
⇒ S H = H C = a 5 2
Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t là
Chọn đáp án C