K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Kẻ DH ^ AB tại H

⇒ A H = A D 2 = 4 c m  

Áp dụng định lý Pytago trong D vuông ADH Þ DH = 4 3 cm.

ÞSABCD = DH.AB = 120cm2

30 tháng 10 2020

giúp em với


A


BCDFEOa, Vì tứ giác ABCD là hình hình hành

⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC{AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD{AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)

 học tốt ;-;

6 tháng 10 2019

bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau 

6 tháng 10 2019

A D B C K I 1 1 2 1

a) Vì ABCD là hình bình hành ( GT ) 

\(\Rightarrow AD//BC\left(Tc\right)\)

\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )

Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )

\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)

Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)

\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết ) 

b) Ta có : CK là phân giác của góc DCI ( GT )

\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)

AI là phân giác của góc BAK ( GT )

\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)

Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)

Từ ( 1 ) ,(2 ) ,( 3)

\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)

Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)

\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)

c) Bạn tự làm nốt nha ! 

Hướng dẫn cách vẽ hình : Cậu nên vẽ hình thang ABCD cân tại C và D và sao cho góc A và góc D là 2 góc kề 1 bên của tứ giác !!!!( ko bt vẽ trên này

        Giải :

Ta có hình thang ABCD có 2 đáy AB và DC

=>  AB//DC

Mà M là giao điểm phân giác của 2 góc B và góc D nằm trên AB 

=> AM//DC

=> BM//DC

Vì AM//BC

=> AMD = MDC ( 2 góc so le trong ) ( 1)

Mà DM là pg ADC

=> ADM = MDC (2)

Từ (1) và (2) :

=> ADM = AMD

=> Tam giác AMD cân tại A 

=> AD = AM(3)

Chứng minh tương tự ta cũng có tam giác MBC cân tại B và suy ra BC = MB(4)

Từ (3) và (4) 

=> M là trung điểm AB

Còn ý b) ko bt làm

Sai thông cảm nhé

Gọi O là giao điểm AC, BD=> O là trung điểm BC

=> Q là trọng tâm tam giác ABC \(\Rightarrow BQ=\frac{2}{3}BO=\frac{1}{3}BD\)

Lần lượt kẻ QK và OH vuông góc BC \(\Rightarrow\frac{QK}{OH}=\frac{BQ}{BO}=\frac{2}{3}\)(định lí Ta-lét)

Ta có: \(S_{BQM}=\frac{1}{2}.QK.BM\)

\(S_{OBC}=\frac{1}{2}.OH.BC=\frac{1}{2}.\left(\frac{3}{2}QK\right).2BM=3\left(\frac{1}{2}QK.BM\right)=3S_{BQM}\)

Lại có:\(S_{OBC}=\frac{1}{2}S_{BCD}=\frac{1}{4}S_{ABCD}=\frac{1}{4}\)

\(\Rightarrow S_{BQM}=\frac{1}{3}S_{OBC}=\frac{1}{12}\)

\(\Leftrightarrow S_{MQDC}=S_{BCD}-S_{BQM}=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)

6 tháng 10 2019

a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành

b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác

Suy ra F là trung điểm của BE

c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB

6 tháng 10 2019

a) Xét hình bình hành ABCD có:

AB=CD => AM=CN (1)

AB//CD => AM//CN (2)

Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)

b) Ta có: MF//AE (do CM//AN)

Xét tam giác BEA có:

MF//AE

AM=MB

=> MF là đường trung bình của tam giác BEA

=> EF=FB hay F là trung điểm của BE

c) Ta có: CF//NE (do CM//AN)

Xét tam giác DFC có:

DN=NC

CF//NE

=> NE là đường trung bình của tam giác DFC

=> DE=EF

mà EF=FB nên DE=EF=FB