Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BE, DF cùng vuông góc vs AC nên BE//DF
tam giác BEO = tam giác DFO ( cạnh huyền - góc nhọn) (O là gđ 2 đường chéo)
=> BE = FD
từ đó đc tg BEDF là hình bình hành
b, tam giác BHC đồng dạng vs tam giác DKC (g.g)
có góc H = góc k =90 độ
và góc CBH = góc CDK ( vì 2 góc này kề bù vs 2 góc bằng nhau là góc CBA =góc ADC)
=> BC/DC = HC/KC
=>CB.CK = CH.CD
c, tam giác ABE đồng dạng vs tam giác ACH (g.g)
vì có góc E = góc H = 90 độ
và góc A chung
=> AB/AC = AE/AH
=> AB. AH = AC.AE
T]ơng tự ta đc tam giác ADF đồng dạng vs tam giác ACK
=> AD/AC = AF/AK
=> AD. AK = AC.AF
Vậy AB.AH + AD.AK = AC.AE + AC.AF = AC. (AE +AF) = AC .( AE +CE) = AC^2
tự chứng minh AF = CE theo tam giác vuông BEC = tam giác vuông DFA ( cạnh huyền - cạnh góc vuông)
Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)
a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)
\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)
DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.
b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)
c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)
△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)
\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)
a:Gọi O là giao của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có
OB=OD
góc BOE=góc DOF
=>ΔOEB=ΔOFD
=>BE=DF
mà BE//DF
nên BEDF là hình bình hành
b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có
góc CBH=góc CDK
=>ΔCHB đồng dạng với ΔCKD
=>CH/CK=CB/CD
=>CH*CD=CK*CB