Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
M(0;-3) là điểm cực tiểu của đồ thị hàm số. Khẳng định A sai.
Đáp án B.
Đồ thị hàm số có 2 tiệm cận, 1 tiệm cận đứng, 1 tiệm cận ngang.
Phương trình f(x) = m có 3 nghiệm thực phân biệt thì m ∈ 1 ; 2 .
Phương án D bị gián đoạn bởi tập xác định.
Phương án C sai vì đồ thị hàm số có dáng điệu tiến đến vô cùng.
Đáp án A
Vì hàm số không xác định tại x=-1 nên hàm số đồng biến trên ( - ∞ ; - 1 ) ; ( - 1 ; 1 ) .
Có m a x R \ { 0 } f ( x ) = f ( 1 ) = 2 và hàm số không có giá trị nhỏ nhất.
Chọn đáp án C.
Đáp án D
Tại -1 hàm số không xác định nên không nghịch biến trên ( - ∞ ; 3 )
Đáp án D.
Quan sát bảng biến thiên, ta thấy:
lim x → − 1 − y = + ∞ ; lim x → − 1 + y = − ∞ lim x → 1 − y = − ∞ ; lim x → 1 + y = − ∞ → Đồ thị hàm số có hai đường tiệm cận đứng là x = − 1 và x = 1 . A đúng.
lim x → − ∞ y = 3 ; lim x → + ∞ y = 3 → Đồ thị hàm số có tiệm cận ngang là đường thẳng . B đúng.
Hàm số không có đạo hàm tại điểm , tuy nhiên vẫn đạt giá trị cực đại y=2 tại x=0 . C đúng.
Hàm số không đạt cực trị tại điểm x=1 . D sai.
Cách 1: Tư duy tự luận
Do π > 1 nên π a > π = π 1 ⇔ a > 1 . Vậy A đúng.
Do a > 1 nên a 5 < a 3 ⇔ 5 < 3 (hiển nhiên). Vậy B đúng.
Do e > 1 nên e a > 1 ⇔ e 0 ⇔ a > 0 . Vậy C đúng.
Do a > 1 nên a − 3 > a 2 ⇔ − 3 > 2 (vô lý). Vậy D sai.
Cách 2: Sử dụng máy tính cầm tay
Như vậy nếu a > 1 thì a − 3 < a 2 . Đáp án D sai.
Hàm số nghịch biến nếu f’(x)<0 Quan sát đồ thị y=f’(x), chọn đáp án A. Chọn A
Chọn D.
Dựa vào bảng biến thiên suy ra hàm số nghịch biến trên (0;1)