Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Đáp án A
Từ đồ thị trên của suy ra BBT của .
Suy ra
Do đó
hoặc .
Lập bảng biến thiên suy ra
Chọn A
+ Xét f’(x) = 0 khi x= -2; x= 0 hoặc x= 2.
+ Với x= -2: Giá trị của hàm số y= f’(x) đổi dấu từ âm sang dương khi qua x= -2
=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -2.
+ Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua x= 0 nên x= 0 không là điểm cực trị của hàm số.
+ Với x= 2: Giá trị của hàm số y= f’(x) đổi dấu từ dương sang âm khi qua x= 2
=> Hàm số y= f(x) đạt cực đại tại điểm x= 2.
Chọn D
Quan sát đồ thị hàm số y= f’( x)
+ Trên khoảng (0; 2) ta thấy đồ thị hàm số y= f’( x) nằm bên dưới trục hoành.
=> Trên khoảng (0; 2) thì f’( x) < 0.
=> Hàm số y= f( x) nghịch biến trên khoảng ( 0; 2) .
Chọn C.
Từ đồ thị dễ thấy hàm số nghịch biến và liên tục trên [-3;0] nên m a x [ - 3 ; 0 ] f ( x ) = f(-3)