K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Chọn B 

Ta có: T6GG2ZaJ4rUY.png.

 Khi đó 25sDqUx64AGk.png

Vẽ đồ thị hàm số 0MNggcsXV0A8.png trên mặt phẳng toạ độ đã có đồ thị  y= f’(x).

Dựa vào hình vẽ trên ta thấy phương trình sS2k4c7HFVZk.png có ba nghiệm đơn:
  x1< x2< x3

rY7gxc3C5Z1v.png         

Ta lập được bẳng xét dấu của  g’(x) : 

mL2AmmqNM6JI.png

Dựa vào bảng xét dấu ta thấy dấu của ikBV5tzU7ixs.png thay đổi từ J7SVzmkyYR5I.png sang 1o3zqN12OLIg.png hai lần. Vậy có hai điểm cực tiểu.

GV
25 tháng 4 2017

a) (H) có các đường tiệm cận là:

- Tiệm cận ngang y = -1

- Tiệm cận đứng x = -1

hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).

Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)

b) Hình (H') có phương trình là:

\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)

Hình đối xứng với (H') qua gốc tọa độ có phương trình là:

\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)

a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

b: Để B là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{1;0\right\}\)(do x là số nguyên)

c: Để C là số nguyên thì \(3x-3+10⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

d: Để D là số nguyên thì \(4x-1⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{4;2;14;-8\right\}\)

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

AH
Akai Haruma
Giáo viên
10 tháng 7 2017

Lời giải:

PT hoành độ giao điểm:

\(mx+2m+1-\frac{2x+1}{x+1}=0\Leftrightarrow mx^2+x(3m-1)+2m=0\)

Để hai ĐTHS cắt nhau tại hai điểm $A,B$ thì \(m\neq 0\) và:

\(\Delta=(3m-1)^2-8m^2=m^2-6m+1>0\)

Khi đó áp dụng hệ thức Viete có \(\left\{\begin{matrix} x_1+x_2=\frac{1-3m}{m}\\ x_1x_2=2\end{matrix}\right.\)

Ta có:

\(d(A,Ox)=d(B,Ox)\Leftrightarrow |mx_1+2m+1|=|mx_2+2m+1|\)

TH1: \(mx_1+2m+1=mx_2+2m+1\Leftrightarrow x_1=x_2\)

\(\Rightarrow x_1=x_2=\sqrt{2}\Rightarrow \frac{1-3m}{m}=2\sqrt{2}\) kéo theo \(m=\frac{1}{2\sqrt{2}+3}\) (không thỏa mãn đk của \(\Delta)\)

TH2: \(mx_1+2m+1=-(mx_2+2m+1)\Leftrightarrow m(x_1+x_2)+4m+2=0\)

\(\Leftrightarrow 3+m=0\Rightarrow m=-3\) (t/m)

Vậy $m=-3$

12 tháng 7 2017

tks bạn nha

29 tháng 3 2017

Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít

29 tháng 3 2017

Sau khi bán nửa lít thì còn lại số lít là :

18 : \(\dfrac{1}{2}\) = 36 lít

Vì bán 1 nửa tương ứng với 36 lít , vậy :

36 . 2 = 72 lít

Đ/s : 72 lít

29 tháng 5 2017

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )

Từ đồ thị ta thấy:

- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.

- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)

- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với  \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).

 

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )

Từ đồ thị ta thấy:

- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm

- Với 1<m/2<5⇔ 2<m

- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1