Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Đồ thị hàm số có x = 1 là tiệm cận đứng và y = 1 2 là tiệm cận ngang khi x = 2 b = 1 a b = 1 2 ⇔ a = 2 a = 1 .
Phương pháp:
Dựa vào các tính chất của đồ thị hàm số mũ và hàm số logarit.
Cách giải:
Cả 4 phát biểu đều đúng
Chọn C
Đáp án A.
Đồ thị nhận x = 2 là tiệm cận đứng ⇒ 2 + b = 0 ⇔ b = − 2.
Đồ thị đi qua 4 ; 2 ⇔ 2 = a 4 − 4 4 + b ⇒ 2 = 4 a − 4 4 − 2 ⇒ a = 2. ⇒ a + b = 0.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Chọn D.
Phương pháp: Sử dụng định nghĩa tiệm cận đứng.
Cách giải: Để đồ thị hàm số đã cho có tiệm cận đứng và tiệm cận ngang thì