K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

4 tháng 2 2016

Hỏi đáp Toán

https://i.imgur.com/3Wy6g2D.jpg
8 tháng 4 2018

3 tháng 8 2017

Chọn A

Từ  

3 tháng 12 2019

Đáp án C

24 tháng 10 2015

ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

            \(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)

             \(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)

ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\)\(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)

vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6

 

7 tháng 12 2017

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

9 tháng 12 2018

Chọn đáp án A

Ta có  w = z - z ' = 4 + 3 i

⇒ w = 4 2 + 3 2 = 5

24 tháng 9 2018

Chọn đáp án B

Gọi các kích thước của khối hộp là a (cm), b(cm), c (cm) với a, b, c là các số nguyên dương.

Từ giả thiết ta có

 

Lại có 9 = b + c ≥ 2 b c ⇒ b c ≤ 81 4

b, c là các số nguyên dương nên b c ≤ 20  

Từ b +c =9

⇒  trong hai số b, c có 1 số lẻ và 1 số chẵn ⇒  bc chẵn.

Từ a = 42 b c  và a nguyên dương nên bc là ước nguyên dương của 42.

Nếu bc =6 thì b, c là nghiệm của phương trình X 2 - 9 X + 6 = 0  (loại vì nghiệm của phương trình này không là số nguyên).

Nếu bc =14 thì b, c là nghiệm của phương trình

⇒ b c = 14 thỏa mãn. Vậy chiều cao của khối hộp là  a = 42 b c = 3 c m