K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

chọn b

4 tháng 5 2017

Ta có:a-7>b-7\(\Rightarrow\)a>b

Vì a>b\(\Rightarrow\)a+7>b+7

Vậy khẳng định(C) là đúng

22 tháng 4 2017

Với ∆ABC thì các khẳng định

a) ^A+^B+^C>1800A^+B^+C^>1800 là sai

b) ^A+^B<1800A^+B^<1800 là đúng

c)^B+^C<1800B^+C^<1800 là đúng

d) ^A+^B1800A^+B^≥1800 là sai

3 tháng 8 2022

b đúng
a, c, d sai

4 tháng 5 2017

Chọn khẳng định đúng trong các khẳng định sau :

(A) −2,83>2,83−2,83>2,83 (B) −2,83≥2,83−2,83≥2,83

(C) −2,83=2,83−2,83=2,83 (D) −2,83≤2,83

18 tháng 3 2018

c

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

4 tháng 5 2018

B

24 tháng 3 2018

a)Vì a<b=>2a<2b

=>2a+5<2b+5

b)Vì a<b=>-10a>-10b

=>2-10a>2-10b

c)Vì a<b=>7a<7b

=>7a-3<7b-3(1)

Vì -3<-1=>7b-3<7b-1(2)

Từ (1) và (2)=>đpcm

d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)

=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)

Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)

Từ (3) và (4)=> đpcm

24 tháng 3 2018

a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5

b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)

c, Ta có: a < b \(\Rightarrow\)7a < 7b

Lại có: -3 < -1

\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1

d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)

Lại có: 3 > 1

\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)

22 tháng 4 2017

a) (-6).5 < (-5).5

Vì -6 < -5 và 5 > 0

=> (-6).5 < (-5).5

Vậy khẳng định (-6).5 < (-5).5 là đúng

b) -6 < -5 và -3 < 0

=> (-6).(-3) > (-5).(-3)

Vậy khẳng định (-6).(-3) < (-5).(-3) là sai.

c) -2003 ≤ 2004 và -2005 < 0

=> (-2003).(-2005) ≥ (-2005).2004

Vậy khẳng định (-2003).(-2005) ≤ (-2005).2004 là sai.

d) x2 ≥ 0 và -3 < 0

=> -3x2 ≤ 0

Vậy khẳng định -3x2 ≤ 0 là đúng


17 tháng 6 2018

Do phương trình \(ax^2+bx+c\)vô  nghiệm nên ta có: 

\(b^2-4ac< 0\)

\(\Leftrightarrow4ac>b^2\)

Mà \(b>a>0\)

\(\Rightarrow c>0\)

Giả sử \(\frac{a+b+c}{b-a}>3\)      \(\left(1\right)\)

\(\Leftrightarrow a+b+c>3b-3a\)

\(\Leftrightarrow4a+c>2b\)

Lại có: \(\left(4a+c\right)^2\ge16ac>4b^2\)

\(\Rightarrow4a+c>2b\)

Suy ra (1) đúng.

Vậy \(\frac{a+b+c}{b-a}>3\)