K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

n → α  = (1;-2;3);  n → β  = (2;-4;6)

Hai vecto pháp tuyến của hai mặt phẳng là hai vecto tỉ lệ

6 tháng 9 2019

Đáp án B

30 tháng 6 2018

Đáp án D

Gọi mặt phẳng cần tìm là  (P). Khi đó  (P) nhận vtpt của  α  và  β  là cặp vtcp

22 tháng 4 2019

25 tháng 11 2019

13 tháng 10 2018

Mặt phẳng ( α ) vuông góc với hai mặt phẳng ( β ) và ( γ ), do đó hai vecto có giá song song hoặc nằm trên ( α ) là:  n β →  = (3; −2; 2) và  n γ →  = (5; −4; 3).

Suy ra  n α →  =  n β →   ∧   n γ →  = (2; 1; −2)

Mặt khác ( α )( α ) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là  n α → . Vậy phương trình của ( α ) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.

20 tháng 8 2017

Đáp án B

Mặt phẳng (α) song song với mặt phẳng (β) khi  chỉ khi:

Hệ này  nghiệm nên không  giá trị của m thỏa mãn.

9 tháng 4 2017

Chọn B

8 tháng 11 2021

a) Vector pháp tuyến của hai mặt phẳng (\(\alpha\)) và (\(\beta\)lần lượt là \(\overrightarrow{n_{\alpha}}\)=(4;1;2) và \(\overrightarrow{n_{\beta}}\)=(2; -2;1). Do hai vector này không cùng phương nên hai mặt phẳng (\(\alpha\)) và (\(\beta\)cắt nhau.

b) Với x=0, \(\left\{{}\begin{matrix}y+2z+1=0\\-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-1\end{matrix}\right.\).

Với x=1, \(\left\{{}\begin{matrix}4+y+2z+1=0\\2-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-3\end{matrix}\right.\).

Suy ra đường thẳng d đi qua hai điểm A(0;1; -1) và B(1;1; -3), \(\overrightarrow{u_d}\)=\(\overrightarrow{AB}\)=(1;0;-2).

Phương trình cần tìm:

d: \(\left\{{}\begin{matrix}x=t\\y=1\\z=-1-2t\end{matrix}\right.\).

c) Gọi M'(x;y;z). Phương trình đường thẳng d' đi qua M(4;2;1) và nhận vector \(\overrightarrow{n_{\alpha}}\)=(4;1;2) làm vector chỉ phương là:

d': \(\left\{{}\begin{matrix}x=4+4t\\y=2+t\\z=1+2t\end{matrix}\right.\). Gọi M"(4+4t; 2+t; 1+2t) ∈ d'.

M"=d'\(\cap\)(α) ⇒ 4(4+4t)+2+t+2(1+2t)+1=0 ⇒ t= -1 ⇒ M''(0;1; -1).

Điểm M' đối xứng với M qua M'', suy ra M'(-4;0; -3).

d) Gọi N'(a;b;c). Phương trình mp(P) đi qua N(0;2;4) và nhận vector \(\overrightarrow{u_d}\)=(1;0; -2) làm vector pháp tuyến là:

(P): x -2z+8=0. Gọi N''(t;1; -1 -2t) ∈ d.

N''=d\(\cap\)(P) ⇒ t -2( -1 -2t)+8=0 ⇒ t= -2 ⇒ N''(-2;1;3).

Điểm N' đối xứng với N qua N'', suy ra N'(-4;0;2).

2 tháng 7 2017

Giải bài 16 trang 102 sgk Hình học 12 | Để học tốt Toán 12