Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đoạn thẳng MN thuộc tia xy ( xM<xN)
a, Xét đ.tr (O) có : góc xME là góc tạo bởi tt và dây cung chắc cung ME và MDE là góc nt chắn cung ME
=> góc xME=MDE. Vì MN//EF => góc MDE=NMD ( so le trong ).
Mà góc GMN=xME ( đối đỉnh ) => góc GMN=DMC (1)
Tương tự ta có : GNM=MND (2)
Xét tam giác GMN và DMN có :
(1) và (2)
Cạnh MN chung
=> tam giác DMN=DMN ( g.c.g )
A B M C N D O E
a) Ta có : \(\widehat{ANC}=\widehat{ACM}=\frac{1}{2}\) sđ cung MC ; Góc CAN là góc chung của hai tam giác CAM và tam giác NAC
\(\Rightarrow\Delta CAM~\Delta NAC\left(g.g\right)\) \(\Rightarrow\frac{CM}{CN}=\frac{AC}{AN}\) (1)
Tương tự với tam giác BAM và tam giác NAB ta cũng có \(\widehat{MBA}=\widehat{ANB}=\frac{1}{2}\)sđ cung BM ; Góc NAB là góc chung của hai tam giác
\(\Rightarrow\Delta BAM~\Delta NAB\left(g.g\right)\Rightarrow\frac{AB}{AN}=\frac{BM}{BN}\) (2)
Mà AB = AC (vì AB và AB là hai tiếp tuyến của (O))
Do đó, kết hợp (1) và (2) ta có \(\frac{CM}{CN}=\frac{BM}{BN}\Rightarrow BM.CN=BN.CM\)
a, Ta có: D M N ^ = E ^ = G M N ^ , D N M ^ = N F D ^ = G N M ^
=> ∆GMN = ∆DMN
b, Chứng minh được MN là đường trung trực của GD
=> GD ⊥ EF (1)
Gọi J là giao điểm của DC và MN
Ta có J M D H = J N D K C J C D
Mặt khác: JM = JN (cùng bằng J C . J D )
=> DH = DK (2). Từ (1) và (2) Þ ĐPCM