K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

M A B C O N D

Gọi \(BC\) cắt \(\left(O;r\right)\) lần thứ hai tại \(N\)\(CD\) là đường kính của \(\left(O;R\right)\)

Do hình chiếu vuông góc của \(O\) trên \(BC\) là trung điểm của \(MN,BC\) nên \(MB=NC\)

Tính đối xứng tâm của đường tròn nên \(NC=AD,NC||AD\) hay \(MB=||AD\)

Suy ra \(AM=DB\). Ta biến đổi:

\(MA^2+MB^2+MC^2=MA^2+\left(MB+MC\right)^2-2MB.MC\)

\(=DB^2+BC^2-2\left(R^2-OM^2\right)=\left(2R\right)^2-2\left(R^2-r^2\right)=2\left(R^2+r^2\right)\)

2 tháng 3 2019

bn làm đc câu nào rồi

4 tháng 3 2019

làm được xong ý c rồi còn ý d nữa bn làm dc ko giúp mik vs

NV
3 tháng 8 2021

a.

Gọi D là trung điểm BC \(\Rightarrow OD\perp BC\)

Gọi E là trung điểm AM \(\Rightarrow OE\perp AM\)

\(\Rightarrow\) Tứ giác OEMD là hình chữ nhật (có 3 góc vuông)

\(\Rightarrow MD=OE\) và \(ME=OD\)

\(MA^2+MB^2+MC^2=MA^2+\left(BD-MD\right)^2+\left(DC+MD\right)^2\)

\(=\left(2ME\right)^2+\left(BD-MD\right)^2+\left(BD+MD\right)^2\) (do \(BD=CD\))

\(=4ME^2+2BD^2+2MD^2\)

\(=2\left(ME^2+BD^2\right)+2\left(ME^2+MD^2\right)\)

\(=2\left(OD^2+BD^2\right)+2\left(OD^2+MD^2\right)\)

\(=2OB^2+2OM^2\)

\(=2R^2+2r^2\) cố định (đpcm)

b. Gọi G là giao điểm OM và AD

Theo c/m câu a ta có \(\left\{{}\begin{matrix}OD||AM\\OD=EM=\dfrac{1}{2}AM\end{matrix}\right.\) 

Theo định lý Talet: \(\dfrac{DG}{AG}=\dfrac{OD}{AM}=\dfrac{OG}{GM}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}AG=\dfrac{2}{3}AD\\OG=\dfrac{1}{3}OM\end{matrix}\right.\)

Do O, M cố định \(\Rightarrow\) G cố định

Mặt khác trong tam giác ABC do D là trung điểm AB \(\Rightarrow\) AD là trung tuyến

Mà \(AG=\dfrac{2}{3}AD\Rightarrow\) G là trọng tâm tam giác ABC

\(\Rightarrow\) Trọng tâm tam giác ABC cố định

NV
3 tháng 8 2021

undefined