K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

Đáp án B

+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:

suy ra d và d’ cắt nhau tại M( m-1; 3m-1)

+  Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có

3m-1= -m( m-1) + 2 hay m2+ 2m-3=0

Suy ra m=1 hoặc m= -3

Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ :  y= 3x+ 2 và d’’: y= -x+ 2  phân biệt và đồng quy tại M(0; 2).

Với m= -3  ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn

Vậy m= 1 là giá trị cần tìm.

Chọn B.

22 tháng 11 2022

PTHĐGD là:

(2m-2)x+1-2m=1/2(1-m)x+3/2(1-m)

=>\(\Leftrightarrow x\left(2m-2-\dfrac{1}{2\left(1-m\right)}\right)=\dfrac{3}{2\left(1-m\right)}-1+2m\)

\(\Leftrightarrow x\cdot\left(\dfrac{4\left(m-1\right)\left(m-1\right)+1}{2\left(m-1\right)}\right)=\dfrac{3+2\left(1-m\right)\left(-1+2m\right)}{2\left(1-m\right)}\)

\(\Leftrightarrow x\cdot\dfrac{4m^2-8m+4+1}{2\left(m-1\right)}=\dfrac{3+\left(2-2m\right)\left(2m-1\right)}{2\left(1-m\right)}\)

\(\Leftrightarrow x=\dfrac{3-4m-2-4m^2+2m}{4m^2-8m+4}=\dfrac{-4m^2-2m+1}{4m^2-8m+4}\)

=>\(y=\left(2m-2\right)\cdot\dfrac{-4m^2-2m+1}{4\left(m-1\right)^2}+1-2m\)

\(=\dfrac{2\left(m-1\right)\left(-4m^2-2m+1\right)}{4\left(m-1\right)^2}+1-2m\)

\(=\dfrac{-4m^2-2m+1}{2\left(m-1\right)}+\left(-2m+1\right)\)

\(=\dfrac{-4m^2-2m+1+\left(-2m+1\right)\cdot\left(2m-2\right)}{2\left(m-1\right)}\)

\(=\dfrac{-4m^2-2m+1-4m^2+4m-2m+2}{2\left(m-1\right)}\)

\(=\dfrac{-8m^2+3}{2\left(m-1\right)}\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Đường tròn (C):

\(x^2+y^2+2x-2y-2=0\)

\(\Leftrightarrow (x+1)^2+(y-1)^2=4=2^2\)

Do đó đường tròn (C) là đường tròn có tâm \(I(-1;1)\) bán kính \(R=2\)

Từ $I$ kẻ \(IH\perp BC\) thì $H$ là trung điểm của $BC$

\(\Rightarrow BH=\sqrt{3}\)

Áp dụng định lý Pitago:

\(IH=\sqrt{BI^2-BH^2}=\sqrt{R^2-3}=\sqrt{4-3}=1(1)\)

Mà: \(IH=d(I, d)=\frac{|-1-m+2m+3|}{\sqrt{m^2+1}}=\frac{|m+2|}{\sqrt{m^2+1}}(2)\)

Từ \((1); (2)\Rightarrow \frac{|m+2|}{\sqrt{m^2+1}}=1\)

\(\Rightarrow (m+2)^2=m^2+1\Leftrightarrow m^2+4m+4=m^2+1\)

\(\Leftrightarrow 4m+3=0\Leftrightarrow m=\frac{-3}{4}\)

6 tháng 5 2019

Theo phương trình hoành độ giao điểm:

\(x+1-m=-x^2\)

\(\Leftrightarrow x^2+x+1-m=0\)

Phương trình cần 2 nghiệm phân biệt:

\(\Rightarrow\Delta>0\)

\(\Leftrightarrow1^2-4\left(1-m\right)>0\)

\(\Leftrightarrow4m-3>0\)

\(\Leftrightarrow m>\frac{3}{4}\)

Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=1-m\end{matrix}\right.\)

\(y_1=x_1+1-m\)

\(y_2=x_2+1-m\)

\(x_1+1-m-\left(x_2+1-m\right)=x_1^2-x_2^2+1\)

\(\Leftrightarrow x_1-x_2=x^2_1-x^2_2+1\)

Vậy với \(m>\frac{3}{4}\)thõa mản điều kiện ban đầu (?)

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2-mx+\dfrac{3}{2}m+1=0\)

=>\(x^2-4mx+6m+4=0\)

\(\text{Δ}=\left(-4m\right)^2-4\left(6m+4\right)\)

\(=16m^2-24m-16\)

Để (d) và (P) có 1 điểm chung thì Δ=0

=>16m^2-24m-16=0

=>m=2 hoặc m=-1/2