K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

a) (E): Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10 có a = 10; b = 6 ⇒ c2 = a2 – b2 = 64 ⇒ c = 8.

+ Tọa độ các đỉnh của elip là: A1(-10; 0); A2(10; 0); B1(0; -6); B2(0; 6)

+ Tọa độ hai tiêu điểm của elip: F1(-8; 0) và F2(8; 0)

+ Vẽ elip:

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Ta có: M ∈ (E) ⇒ MF1 + MF2 = 2a = 20 (1)

MN // Oy ⇒ MN ⊥ F1F2 ⇒ MF12 – MF22 = F1F22 = (2c)2 = 162

⇒ (MF1 + MF2).(MF1 – MF2) = 162

⇒ MF1 – MF2 = 12,8 (Vì MF1 + MF2 = 20) (2).

Từ (1) và (2) ta có hệ phương trình

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

Vậy MN = 2.MF2 = 7,2.

31 tháng 5 2017

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

Hỏi đáp Toán

30 tháng 3 2017

Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .

Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)

Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .

Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .

Cho hình sau: undefined

12 tháng 4 2016

Chia 2 vế của phương trình cho 36 ta được :

=>  +  = 1

Từ đây suy ra: 2a = 6.     2b = 4,    c = √5

=>  F1(-√5 ; 0) và F2(√5 ; 0)

 A1(-3; 0), A2(3; 0),  B1(0; -2),  B2(0; 2).

12 tháng 4 2016

4x2 + 9y2 = 1   <=>   +  = 1

  a2=    => a =    => độ dài trục lớn 2a = 1

  b2 =   => b =  => độ dài trục nhỏ 2b = 

  c2 = a2 – b2   

 –  =      => c = 

 F1(- ; 0) và F2( ; 0)

  A1(-; 0), A2(; 0),  B1(0; – ),  B2(0;  ).

26 tháng 4 2017

F1 F2 A1 A2 B2 B1 y x o

Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)

a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)

b2=9=>b=3 =>B1(0;-3) B2(0;3)

c2=a2-b2=25-9=16 =>c=4

=> F1(-4;0) F2(4;0)

b) Giả sử tọa độ điểm M(m;n)

MF1 góc với MF2 => (m+4)(m-4) + n2=0

<=> m2+n2=16 =>9m2+9n2=144(1)

Do M thuộc (E) nên 9m2+25n2=225(2)

Trừ vế với vế của (2) cho (1) ta được 16n2=81

=> \(n=_-^+\dfrac{9}{4}\)

với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)

với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)

Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

2 tháng 1 2019

Elip (E): Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10 có a = 4, b = 3 ⇒ c2 = a2 – b2 = 7 ⇒ c = √7.

+ Các đỉnh của elip là: A1(–4; 0); A2(4; 0); B1(0; –3); B2(0; 3).

+ Tiêu điểm của elip: F1(–√7; 0); F2(√7; 0).

+ Vẽ elip:

Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10