Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tâm I(2 ; -4), R = 5
b) Đường tròn có phương trình: (x – 2 )2 + (y + 4)2 = 25
Thế tọa độ A(-1 ; 0) vào vế trái, ta có :
(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25
Vậy A(-1 ;0) là điểm thuộc đường tròn.
Áp dụng công thức tiếp tuyến (Xem sgk)
Ta được pt tiếp tuyến với đường tròn tai A là:
(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25 <=> 3x – 4y + 3 = 0
Chú ý:
1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:
Vectơ = (-3; 4)
Tiếp tuyến đi qua A(-1; 0) và nhận làm một vectơ pháp tuyến có phương trình:
-3(x + 1) + 4(y – 0) = 0 ,<=> 3x – 4y + 3 = 0
a. \(2x+3y-7=0\)
b. \(3x-2y-4=0\)
c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của \(\Delta\) , do góc giữa d và \(\Delta\) bằng \(45^0\) nên ta có phương trình :
\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)
Giải phương trình ta thu được :
\(l=\frac{1}{5}\) hoặc \(l=-5\)
* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)
* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)
d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)
Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :
\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow b\left(12a+5b\right)=0\)
- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)
- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :
\(5x-12y+2=0\)
Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)
Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)
Do đó nếu đường thẳng d tạo với \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của \(\Delta_1;\Delta_2\)
Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng \(\Delta_1\) một góc \(\frac{\pi}{4}\).
Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :
\(ax+by-a-b=0\)
Do góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên
\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)
Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)
Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)
Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:
d(I; d) = R
Ta có : R = d(I; d) = =
Phương trình đường tròn cần tìm là:
(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =
<=> 5x2 + 5y2 +10x – 20y +21 = 0
Áp dụng công thức cos =
ta có cos =
=> cos = = = => = 450
Bài 1:
\(2c=8\Rightarrow c=4\)
Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)
Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)
Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)
Bài 2:
\(2a=10\Rightarrow a=5\)
\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)
Phương trình elip:
\(\frac{x^2}{25}+\frac{y^2}{16}=1\)
Câu 3:
\(x-2y+3=0\Rightarrow x=2y-3\)
Thay vào pt đường tròn ta được:
\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)
\(\Leftrightarrow5y^2-20y+15=0\)
\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)
Tọa độ 2 giao điểm: \(A\left(-1;1\right)\) và \(B\left(3;3\right)\)
Câu 4:
Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)
Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)
\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)
Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)
Đáp án B
Gọi ∆ là đường thẳng cần tìm và n → ( A ; B ) là VTPT của ∆ A 2 + B 2 ≠ 0
Để ∆ tạo với đường thẳng ( d) một góc 450 thì:
Tương đương: 2( A- 2B) 2= 5( A2+ B2)
Nên A= -3B hoặc B= 3A
+ Với A= - 3B, chọn B= -1 thì A= 3 ta được phương trình ∆ : 3x- y- 5= 0.
+ Với B= 3A, chọn A= 1 thì B= 3 ta được phương trình ∆: x+ 3y- 5 = 0 .