K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Đáp án A

Phương pháp giải:

Hàm số đơn điệu trên đoạn nên giá trị nhỏ nhất – lớn nhất sẽ đạt tại đầu mút của đoạn

Lời giải:

Ta có  suy ra f(x) là hàm số nghịch biến trên [a;b]

Mà  . Vậy 

26 tháng 4 2017

6 tháng 7 2018

14 tháng 7 2017

Đáp án C

29 tháng 3 2019

10 tháng 11 2017

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

22 tháng 10 2018

30 tháng 3 2019

Mặt khác hàm số có đạo hàm tại điểm

Chọn A