Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi A là tọa độ giao điểm của (d1) và (d2)
Xét phương trình hoành độ giao điểm của d1 và d2
\(x+4=\frac{-1}{2}x+\frac{7}{4}\)
\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)
\(\Leftrightarrow4x+16=-2x+7\)
\(\Leftrightarrow6x=-9\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Thay x = -3/2 vào ( d1 ) ta được:
y = -3/2 + 4 = 5/2
Vậy tọa độ giao điểm của 2 đường thẳng là A (-3/2 ; 5/2 )
2.
a)
x y=3/4x-3 0 -3 0 4
0 y x -3 4 y=3/4x-3 B C H
b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)
\(\Leftrightarrow OH^2=\frac{144}{25}\)
\(\Leftrightarrow OH=\frac{12}{5}=2,4\)
Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4
Học tốt!!!
Gọi d1 giao d2 tại A(Xo : Yo)
Vì A thuộc d1 => Yo=Xo+1 (1)
Vì A thuộc d2 => Yo=-Xo+3(2)
Từ (1) và (2) => Yo=2 ; Xo=1 => A(1;2)
Để 3 đường thẳng đồng quy => A thuộc d3
Vì A thuộc d3 =>Yo=mXo+m-1
<=> 2= 2m -1
<=> m=1
2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)
Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)
\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)
1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1 b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1 2. a) Tự làm b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\) y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)
3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\) b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
a) ĐKXĐ : \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\)
b) \(5-2x\ne0\Leftrightarrow x\ne\frac{5}{2}\)
c) \(x+4\ne0\Leftrightarrow x\ne-4\)
d) \(2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
e) Với mọi x là số thực
f) \(\begin{cases}4-x\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow-1\le x\le4\)
a)
g(x) = 2x - 3 g(x) = 2x - 3 f: 0.5x + y = 2 f: 0.5x + y = 2 TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3”
b) Do (D3) // (D1) nên \(a=-\frac{1}{2}\)
Vậy thì phương trình của (D3) là \(y=-\frac{1}{2}x+b\)
Do (D3) qua điểm (2;-2) nên \(-\frac{1}{2}.2+b=-2\Rightarrow b=-1\)
Vậy (D3) : \(y=-\frac{1}{2}x-1\)
a) y = 1 - 5x là một hàm số bậc nhất với a = -5, b = 1. Đó là một hàm số nghịch biến vì -5 < 0.
b) y = -0,5x là một hàm bậc nhất với a \(\approx\)-0,5, b = 0. Đó là một hàm số nghịch biến vì -0,5 < 0.
c) y = \(\sqrt{ }\)2(x - 1) + \(\sqrt{ }\)3 là một hàm số bậc nhất với a = \(\sqrt{ }\)2, b = \(\sqrt{ }\)3 - \(\sqrt{ }\)2. Đó là một hàm số đồng biến vì \(\sqrt{ }\)2 > 0.
d) y = 2x2 + 3 không phải là một hàm số bậc nhất vì nó không có dạng y = ax + b, với a \(\ne\) 0.
Ta có:
A B 2 = x A - x B 2 + y A - y B 2 = 3 + 3 2 + 4 - 2 2 = 40
AB = 40 = 2 10