Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vệ hình nha ở trên máy tình mình ko biết vẽ
A)xét tg ABM VÀ TG NCM CÓ
AM =NM(M LÀ TRUNG ĐIỂM CỦA AN)
GÓC AMB = GÓC NMC( 2 GÓC ĐỐI ĐỈNH)
MB = MC(M LÀ TRUNG ĐIỂM CỦA BC)
DO ĐÓ TG ABM = TG NCM(C.G.C)
B) VÌ TG ABM = TG NCM(CM CÂU A)
=) GÓC ABM = GÓC NCM
MÀ GOC ABM VA GOC NCM O VI TRI SLT
=)AB // CN
MÀ AB_|_ CN
=) CD _|_ CN
=) GOC DCN = 90DO
ĐÂY LÀ BÀI LÀM CỦA MÌNH CHÚC BẠN THÀNH CÔNG
jfccfffcfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Hình thì Wii tự vẽ nhé.
1/ Ta có:\(AH⊥MN\) (giả thuyết)
AH là phân giác trong của \(\widehat{A}\)(giả thuyết)
\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)
\(\Rightarrow\Delta MAN\)cân tại A
\(\Rightarrow MH=HN=\frac{MN}{2}\)
\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)
2/ Từ B kẽ BK // CN
\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)
Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)
\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)
\(\Rightarrow\Delta MBK\) cân tại B
\(\Rightarrow BM=BK\left(1\right)\)
Xét \(\Delta BKD\)và \(\Delta CND\)có
\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)
\(BD=DC\)(gt)
\(\widehat{BDK}=\widehat{CDN}\)
\(\Rightarrow\Delta BKD=\Delta CND\)
\(\Rightarrow BK=CN\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BM=CN\)
3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)
\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)
\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)
Xét \(\Delta FMN\)và \(\Delta MAI\)có
\(FM=MA\)(gt)
\(\widehat{FMN}=\widehat{MAI}\)(theo 3)
\(MN=AI\)
\(\Rightarrow\Delta FMN=\Delta MAI\)
a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
\(\text{a)}\Delta ABC\text{ cân tại }A\text{ có }\widehat{A}=40^0\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
\(\text{Xét }\Delta ABH\text{ và }\Delta ACH\text{ có:}\)
\(AB=AC\left(gt\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(BH=CH\text{(H là trung điểm BC)}\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\Rightarrow\widehat{ÂHB}=\widehat{AHC}\)
\(\text{mà }\widehat{AHB}+\widehat{AHC}=180^0\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)
\(\Rightarrow AH\perp BC\)
\(\text{b)}\Delta AMC\text{ cân tại M}\text{ vì MD là đường trung trực}\)
\(\Rightarrow\widehat{MAD}=\widehat{MCD}=70^0\)
\(\text{Ta có:}\widehat{MAD}=\widehat{MAH}+\widehat{CAH}\)
\(\Rightarrow\widehat{MAH}=\widehat{MAD}-\widehat{CAH}=70^0-\dfrac{40^0}{2}=50^0\text{(vì AH là phân giác }\widehat{BAC}\text{)}\)
\(\text{c)Xét }\Delta ABM\text{ và }\Delta CAN\text{ có:}\)
\(BM=AN\text{(cách lấy điểm N)}\)
\(AB=AC\left(cmt\right)\)
\(\widehat{ABM}=\widehat{CAN}=180^0-70^0=110^0\)
\(\Rightarrow\Delta ABM=\Delta CAN\left(c.g.c\right)\)
\(\Rightarrow AM=AN\text{(hai cạnh tương ứng)}\)
\(\text{d)Xét }\Delta MIC\text{ và }\Delta NIC\text{ có:}\)
\(IC\text{ cạnh chung}\)
\(\widehat{MIC}=\widehat{NIC}=90^0\)
\(\widehat{IMC}=\widehat{INC}\text{(vì }\Delta ABM=\Delta CAN\text{)}\)
\(\Rightarrow\Delta MIC=\Delta NIC\left(gn.cgv\right)\)
\(\Rightarrow MI=NI\)
\(\Rightarrow\text{I là trung điểm MN}\)