K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Với hai góc  α  và  β  mà  α   β = 90o. Ta có:

sin  α  = cos  α ; cos  α  = sin  α    

tan  α  = cot  α ; cot  α  = tan  α

Đáp án cần chọn là: B

28 tháng 10 2018

Lên cốc cốc tìm cốc cốc toán thay 2 vào mà tìm vậy cũng phải đăng

28 tháng 10 2018

thay 2 vào đâu b?

NV
3 tháng 9 2020

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

30 tháng 6 2017

xin lỗi mk ko thể giúp bn đc mk mới hc lp 7 thôi!

27 tháng 7 2018

a) Mình nghĩ là cos a = cot a . sin a chứ :))

CM nà :

Ta có : cot a =  \(\frac{AB}{AC}\)(1)

\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\)cot a =  \(\frac{cosa}{sina}\)

\(\Leftrightarrow\)cos a = cot a . sin a

b) Ta có : tan a =  \(\frac{AC}{AB}\)

Lại có : cot a =  \(\frac{AB}{AC}\)

\(\Rightarrow\)cos a . tan a =  \(\frac{AC.AB}{AB.AC}\)= 1 

Vậy ...

11 tháng 9 2015

D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)

  \(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)

28 tháng 11 2017

\(\sin\alpha=\frac{2}{3}\) nên a là góc nhọn trong tam giác vuông có cạnh đối là 2, cạnh huyền là 3 suy ra cạnh kề = \(\sqrt{5}\)

Vậy: \(\cos\alpha=\sqrt{\frac{5}{3}};\tan\alpha=\frac{2}{\sqrt{5}};\cot\alpha=\sqrt{\frac{5}{2}}\)

28 tháng 11 2017

lỡ 1 cạnh = 4 1 cạnh là 6 sao bn

NV
12 tháng 11 2019

\(A=\frac{\frac{3sina}{cosa}+\frac{2cosa}{cosa}}{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}=\frac{3tana+2}{3tana-2}=\frac{24+2}{24-2}=\frac{26}{22}=\frac{13}{11}\)

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)