Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
a, \(x^2+y^2=8\Rightarrow\left(x+y\right)^2-2xy=8\Rightarrow xy=\frac{8-\left(x+y\right)^2}{-2}=\frac{8-4}{-2}=-2\)
=>\(M=x^3+x^4+y^3+y^4=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x^2+y^2\right)^2-2x^2y^2\)
\(=2^3-3.\left(-2\right).2+8^2-2.\left(-2\right)^2=76\)
b, \(M=x^2+y^2+2xy-4x-4y+3=\left(x+y\right)^2-4\left(x+y\right)+4-1=\left(x+y-2\right)^2-1=\left(5-2\right)^2-1=8\)
a)
Ta có:
\(2xy=(x+y)^2-(x^2+y^2)=2^2-8=-4\Rightarrow xy=-2\)
Vậy:
\(M=x^3+x^4+y^3+y^4=(x^3+y^3)+(x^4+y^4)\)
\(=(x+y)(x^2+y^2)-xy(x+y)+(x^2+y^2)^2-2x^2y^2\)
\(=2.8-(-2).2+8^2-2(-2)^2\)
\(=76\)
b)
\(M=x^2+y^2+2xy-4x-4y+3\)
\(=(x^2+xy)+(y^2+xy)-4(x+y)+3\)
\(=x(x+y)+y(x+y)-4(x+y)+3\)
\(=(x+y)(x+y)-4(x+y)+3\)
\(=5.5-4.5+3=8\)
Lời giải:
a) Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=t\Rightarrow x=2t; y=5t; z=3t\)
Khi đó:
\(3x+2y-z=13\)
\(\Leftrightarrow 3.2t+2.5t-3t=13\)
\(\Leftrightarrow 13t=13\Rightarrow t=1\)
Do đó: \(\left\{\begin{matrix} x=2t=2\\ y=5t=5\\ z=3t=3\end{matrix}\right.\)
b) Đặt \(\frac{x}{2}=\frac{y}{3}=t\Rightarrow x=2t, y=3t\)
Khi đó: \(x^2+y^2=52\Leftrightarrow (2t)^2+(3t)^2=52\)
\(\Leftrightarrow 13t^2=52\Rightarrow t^2=4\rightarrow t=\pm 2\)
Với \(t=2\Rightarrow x=2t=4; y=3t=6\)
Với \(t=-2\Rightarrow x=2t=-4; y=3t=-6\)
a: \(\dfrac{3-x}{2}+y=1\)
=>3-x+2y=2
=>-x+2y=-1(1)
\(\dfrac{2-y}{3}+x=2\)
=>2-y+3x=6
=>3x-y=4(2)
Từ (1) và (2) suy ra x=7/5; y=1/5
b: \(\dfrac{x}{2}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>3x-2y=1(3)
x-y/3=4
=>x-y=12(4)
Từ (3) và (4) suy ra x=-23; y=-35
c: \(\dfrac{x-2}{3}=y\)
=>x-2=3y
=>x-3y=2(5)
\(\dfrac{x-y}{2}=\dfrac{x}{2}\)
=>x-y=x
=>y=0
Thay y=0 vào x-3y=2, ta đc:
\(x-3\cdot0=2\)
=>x=2
Ta có
A − B = 3 x 3 y 2 + 2 x 2 y − x y − 4 x y − 3 x 2 y + 2 x 3 y 2 + y 2 = 3 x 3 y 2 + 2 x 2 y − x y − 4 x y + 3 x 2 y − 2 x 3 y 2 − y 2 = 3 x 3 y 2 − 2 x 3 y 2 + 2 x 2 y + 3 x 2 y + ( − x y − 4 x y ) − y 2 = x 3 y 2 + 5 x 2 y − 5 x y − y 2
Chọn đáp án C