K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

Ta có

4(18 – 5x) – 12(3x – 7) = 15(2x – 16) – 6(x + 14)

ó 72 – 20x – 36x + 84 = 30x – 240 – 6x – 84

ó -56x + 156 = 24x – 324

ó 24x + 56x = 156 +324 ó 80x = 480 ó x = 6

Vậy x = 6

Đáp án cần chọn là: C

a: \(\Leftrightarrow4\left(-5x+6\right)\left(3x-7\right)=30x-240-6x-84\)

\(\Leftrightarrow4\left(-15x^2+35x+18x-42\right)=24x-324\)

\(\Leftrightarrow-60x^2+212x-168-24x+324=0\)

\(\Leftrightarrow-60x^2+188x+156=0\)

\(\Leftrightarrow15x^2-47x-39=0\)

\(\text{Δ​}=\left(-47\right)^2-4\cdot15\cdot\left(-39\right)=4549>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{47-\sqrt{4549}}{30}\\x_2=\dfrac{47+\sqrt{4549}}{30}\end{matrix}\right.\)

b: \(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow17x+16=7\)

hay x=-9/17

c: \(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

=>4x+13=11

hay x=-1/2

16 tháng 9 2018

4(18-5x)-12(3x-7)=15(2x-16)-6(x+14)
<=>72-20x-36x+84=30x-240x-6x-84

<=>160x=-86

<=>x=-0.0375

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

Giải pt trên được x=6

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Giải làm sao mới là vấn đề bạn ơi!

11 tháng 5 2016

VT=-4(14x-39)

VP=12(2x-27)

pt trở thành -4(14x-39)=12(2x-27)

=>156-56x=24x-324

=>-80x=-480

=>x=6

30 tháng 6 2019

\(a,\frac{-x}{4}+6=8\)\(\Leftrightarrow\frac{x}{-4}=2\Leftrightarrow x=-8\)

b,\(\frac{-4}{x}-7=-5\Leftrightarrow\frac{-4}{x}=2\Leftrightarrow x=-2\)

c,\(12+\frac{-6}{5x}=17\Leftrightarrow-\frac{6}{5x}=5\Leftrightarrow x=-\frac{6}{25}\)

d,\(\frac{3-x}{7}=\frac{x+5}{4}\Leftrightarrow12-4x=7x+35\Leftrightarrow-11x=23\Leftrightarrow x=-\frac{23}{11}\)

e,\(7-2x=-\frac{3}{3x}=-\frac{1}{x}\Leftrightarrow7x-2x^2+1=0\)

\(\Leftrightarrow-2\left(x^2+\frac{7}{2}x+\frac{49}{16}\right)+\frac{57}{8}=0\Leftrightarrow\left(x+\frac{7}{4}\right)^2=\frac{57}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{7}{4}=\frac{\sqrt{57}}{16}\\x+\frac{7}{4}=-\frac{\sqrt{57}}{16}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{57}-28}{16}\\x=\frac{-\sqrt{57}-28}{16}\end{matrix}\right.\)

28 tháng 6 2019

a, \(-\frac{x}{4}+6=8\)

=> \(-\frac{x}{4}=8-6=2\)

=> \(x=2.-4=-8\)

Vậy \(x\in\left\{-8\right\}\)

\(b,\frac{4}{-x}-7=-5\)

=> \(\frac{4}{-x}=-5+\left(-7\right)=-12\)

=> \(x=4:12=\frac{1}{3}\)

Vậy \(x\in\left\{\frac{1}{3}\right\}\)

\(c,12+\frac{-6}{5x}=17\)

=> \(-\frac{6}{5x}=17-12=5\)

=> \(5x=-6:5=-\frac{6}{5}\)

=> \(x=-\frac{6}{5}:5=\frac{6}{25}\)

Vậy \(x\in\left\{\frac{6}{25}\right\}\)

\(d,\frac{3-x}{7}=\frac{x+5}{4}\)

=>\(4\left(3-x\right)=7\left(x+5\right)\)

=> \(12-4x=7x+35\)

=> \(-4x-7x=35-12\)

=> \(-11x=23\)

=> \(x=23:\left(-11\right)=-\frac{23}{11}\)

Vậy \(x\in\left\{-\frac{23}{11}\right\}\)

e, \(7-2x=-\frac{3}{3x}\)

=> \(7-2x=-\frac{1}{x}\)

=> \(7=2x+\left(-\frac{1}{x}\right)\)

=> \(7=2x-\frac{1}{x}\)

=> \(7=\frac{2x^2}{x}-\frac{1}{x}\)

=> \(7=\frac{2x^2-1}{x}\)

=> :))

31 tháng 1 2019

câu a tự quy đồng cùng  mẫu rồi làm thôi :"))

b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)

\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)

Đặt \(x^2-x=k\), ta có:

\(k.\left(k-2\right)=24\)

\(\Leftrightarrow k^2-2k+1=25\)

\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)

\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)

c)\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)

\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)

p/s: bn tự kết luận nha :))