K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 2 2017
xcnhbhjdfb chjb
jckxb nxcnmrehjvsbn
cbjdbfvcm bjkdfbgfmjn
LN
0
TN
1
BG
3 tháng 12 2018
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a=b +1 =c+2 <=> a=1, b=0, c=1
=> Giá trị nhỏ nhất của c = -1
15 tháng 4 2020
hhijestfijteryijryihrjgi
huhyhygtftfrhhfmmhjdhmjhmhxffhdfhdfghdfhdfhdfhhhfhhdfhhgfjgjghfghgghghhh
LN
22 tháng 5 2020
Ta có: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)
\(\Leftrightarrow1\ge\frac{\left(a+b\right)^2}{2}+\frac{1}{2}\)
\(\Leftrightarrow a+b\le1\)
Vậy Max a+b=1 khi và chỉ khi a=b=c=d=1/2