Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Do \(0^o< \alpha< 90^o\) nên \(0< sin\alpha< 1;0< cos\alpha< 1\).
Giả sử: \(tan\alpha< sin\alpha\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}< sin\alpha\)
\(\Leftrightarrow sin\alpha< sin\alpha cos\alpha\)
\(\Leftrightarrow sin\alpha\left(1-cos\alpha\right)< 0\)
\(\Leftrightarrow1-cos\alpha< 0\)
\(\Leftrightarrow cos\alpha>1\) (vô lý).
b) \(sin\alpha+cos\alpha=sin\alpha+sin\left(\dfrac{\pi}{2}-\alpha\right)\)
\(=2.sin\dfrac{\pi}{4}cos\left(\dfrac{\pi}{4}-\alpha\right)=\sqrt{2}cos\left(\dfrac{\pi}{4}-\alpha\right)\)
\(=\sqrt{2}sin\left(\dfrac{\pi}{4}+\alpha\right)=\sqrt{2}sin\left(45^o+\alpha\right)\).
Do \(0^o< \alpha< 90^o\) nên \(45^o< \alpha+45^o< 135^o\).
Vì vậy \(\dfrac{\sqrt{2}}{2}< sin\left(\alpha+45^o\right)< 1\).
Từ đó suy ra \(\sqrt{2}.sin\left(45^o+\alpha\right)>\sqrt{2}.\dfrac{\sqrt{2}}{2}=1\) (Đpcm).
Chọn A.
Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)
Ta có (sin α + cos α) 2 = sin2α + cos2α + 2sinα.cosα = 1 + 24/25 = 49/25.
Vì sin α + cosα > 0 nên ta chọn sinα + cosα = 7/5.
Thay vào P ta được
Chọn D.
Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α + cos2α) = 2.
Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.
Do suy ra sinα < cosα nên sinα - cosα < 0.
Vậy
Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy
=> = cosα; =
= sinα;
Trong tam giác vuông MPO:
MP2+ PO2 = OM2 => cos2 α + sin2 α = 1
Dùng bất đẳng thức phụ:(x+y)2≥4xy
Ta có (a+b)2≥4ab ;(c+b)2≥4cb;(a+c)2≥4ac
⇒(a+b)2(b+c)2(a+c)2≥64(abc)2
do đó (a+b)(b+c)(c+a)≥8abc
Dấu “=” xảy ra khi a = b = c
AD BĐT cô si cho số không âm
(a+b)(a+c)(b+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}\)=8\(\sqrt{\left(abc\right)^2}\)=8abc
Lời giải:
Vì \(x,y,z\in [0;1]\Rightarrow xy; yz,xz\geq xyz\)
\(\Rightarrow P=\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{xy+1}\leq \frac{x}{1+xyz}+\frac{y}{1+xyz}+\frac{z}{1+xyz}=\frac{x+y+z}{xyz+1}(*)\)
\(x,y,z\in [0;1]\Rightarrow \left\{\begin{matrix} (x-1)(y-1)\geq 0\\ (xy-1)(z-1)\geq 0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} xy+1\geq x+y\\ xyz+1\geq xy+z\end{matrix}\right.\)
\(\Rightarrow xyz+2+xy\geq x+y+z+xy\)
\(\Leftrightarrow xyz+2\geq x+y+z\)
Mà: \(xyz+2\leq 2xyz+2=2(xyz+1)\)
\(\Rightarrow x+y+z\leq 2(xyz+1)(**)\)
Từ \((*); (**)\Rightarrow P\leq \frac{2(xyz+1)}{xyz+1}=2\) (đpcm)
Dấu "=" xảy ra khi \((x,y,z)=(1,1,0)\)
Ta có sinα + cosα > 0 và sinαcosα > 0. Do đó
( sin α + cos α ) 2 = sin 2 α + cos 2 α + 2 sin α cos α
= 1 + 2sinαcosα > 1
Từ đó suy ra: sinα + cosα > 1