K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)

a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)

11 tháng 7 2019

a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)

Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x

\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z

\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y

\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z

Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

câu b cách làm giống như câu a

18 tháng 6 2017

Bài 1:

a, \(9^{x-1}=\dfrac{1}{9}\)

\(\Rightarrow9^{x-1}=9^{-1}\)

\(9\ne-1;9\ne0;9\ne1\) nên

\(x-1=-1\Rightarrow x=0\)

Vậy \(x=0\)

b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)

\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)

\(\Rightarrow7-3x^2=\dfrac{25}{4}\)

\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)

\(\Rightarrow x=\pm\dfrac{1}{2}\)

Vậy \(x=\pm\dfrac{1}{2}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 2:

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).

Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì

\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)

Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)

Chúc bạn học tốt!!!

16 tháng 8 2019

a) Ta có \(x:2=y:-5.\)

=> \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=14.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;-10\right).\)

k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)\(2x+3y-z=186.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

Bạn này riết quá, mình cũng đang bận nữa :(

b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)

Vậy...

c) Xem lại đề nhé.

d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)

Vậy...

e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)

\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)

Vậy...

f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

g) Áp dụng TCDTSBN:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)

\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy...

h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)

Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)

Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)

Ta có hệ :

\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)

Vậy...

28 tháng 12 2017

Đề bài âubucqua

28 tháng 12 2017

đề bài mà??. Đấy là cách làm.. ha

18 tháng 2 2017

a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))

=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)

Từ : x-y-z = 0

=>x – z = y; y – x = – z và y + z = x

Suy ra: B =\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)= -1(x,y,z\(\ne\)0)
b)Ta có : \(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có
\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\) =\(\frac{4\left(3x-2y\right)+3\left(2x-4z\right)+2\left(4y-3z\right)}{16+9+4}\)
=0
=>\(\frac{4\left(3x-2y\right)}{16}\)=0 =>3x = 2y=> \(\frac{x}{2}\)=\(\frac{y}{3}\)(1)
\(\frac{3\left(2x-4z\right)}{9}\)=0 =>2z = 4x=>\(\frac{x}{2}\)=\(\frac{z}{4}\)(2)
Từ(1)và (2)=>Đpcm
c)Ta có:\(\frac{5-x}{x-2}\)=\(\frac{3-\left(x-2\right)}{x-2}\)=\(\frac{3}{x-2}\)-1(x\(\ne\)2)
M nhỏ nhất\(\Leftrightarrow\)\(\frac{3}{x-2}\)nhỏ nhất \(\Leftrightarrow\)x-2 lớn nhất và x-2 <0
18 tháng 2 2017

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)

\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)

NV
4 tháng 4 2019

a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)

b/ Do \(x=19\Rightarrow20=x+1\)

\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)

\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(B=20-x=20-19=1\)

c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

11 tháng 12 2016

b)\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

P là số nguyên \(\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)

\(\Leftrightarrow n-1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{0;2\right\}\)

c)\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

\(\Rightarrow12x-8y=0,6z-12x=0,8y-6z=0\)

\(\Rightarrow12x=8y,6z=12x,8y=6z\)

\(\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

13 tháng 12 2016

sao câu A ko có z