Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm phải tìm nằm trong mặt phẳng chứa hai dòng điện, trong khoảng giữa hai dòng điện, cách dòng thứ nhất 30 cm và dòng thứ hai 20 cm. Quỹ tích những điểm ấy là đường thẳng song song với hai dòng điện, cách dòng thứ nhất 30 cm và dòng thứ hai 20 cm.
Điểm phải tìm nằm trong mặt phẳng chứa hai dòng điện, trong khoảng giữa hai dòng điện, cách dòng thứ nhất 30 cm và dòng thứ hai 20 cm. Quỹ tích những điểm ấy là đường thẳng song song với hai dòng điện, cách dòng thứ nhất 30 cm và dòng thứ hai 20 cm.
Mình hướng dẫn thôi nhé
Cảm ứng từ tại O2 do I1 gây ra B1 =10-6 T và do I2 gây ra B2 = 62,8.10-7 T.
Tùy theo chiều dài của hai dòng điện: B = B1 ± B2.
a/ Theo công thức liên hệ giữa cường độ điện trường và hiệu điện thế :
\(E=\frac{U}{d}\) ta có d = CƯỜNG ĐỘ
Suy ra \(E=\frac{U_{CD}}{CD}=\frac{100}{0,02}=\frac{5000V}{m}\)
Để tìm \(U_{AB}\), ta giả sử có một điện tích q dịch chuyển từ A đến B. Theo định nghĩa của hiệu điện thế ta có: \(U_{AB}=\frac{A_{AB}}{q}\)
Trên đoạn đường AB, lực điện trường F = qE luôn luôn vuông góc với AB nên công của lực điện trường
\(A_{AB}=0\). Ta suy ra \(U_{AB}=0\) (mặt phẳng vuông góc với đường sức điện trường là mặt đẳng thế).
Ta có: \(U_{BC}=V_B-V_C=V_B-V_A+V_A-V_C=-U_{AB}+U_{AC}=U_{AC}\)
Mặt khác: \(U_{AC}=U_{CA}=-E.CA=-5000.0,04=-200V\)
b/ Công của lực điện trường khi một êlectron di chuyển từ A đến D:
\(A=-e.U_{AD}\)
với \(U_{AD}=-U_{DA}=-E.DA=-5000.0,02=-100V\)
Vậy \(A=1,6.10^{-19}.\left(-100\right)=1,6.10^{-17}J\)
+ - A B C q1 q2 E1 E2 E
Nhận xét: Do \(AB^2=AC^2+BC^2\) nên tam giác ABC vuông tại C.
Điện trường tổng hợp tại C là: \(\vec{E}=\vec{E_1}+\vec{E_2}\)
Suy ra độ lớn: \(E=\sqrt{E_1^2+E_2^2}\) (*) (do \(\vec{E_1}\) vuông góc với \(\vec{E_2}\) )
\(E_1=9.10^9.\dfrac{16.10^{-8}}{0,04^2}=9.10^5(V/m)\)
\(E_1=9.10^9.\dfrac{9.10^{-8}}{0,03^2}=9.10^5(V/m)\)
Thay vào (*) ta được \(E=9\sqrt2.10^5(V/m)\)