Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian xuôi dòng của canô là :
8 giờ 6 phút – 7 giờ 30 phút = 36 phút = 0,6 (giờ)
- Vận tốc xuôi dòng của ca nô là :
12 : 0,6 = 20 (km/h)
- Thời gian ngược dòng của canô là :
9 giờ 9 phút – 8 giờ 6 phút – 15 phút = 48 phút = 0,8 (giờ)
- Vận tốc ngược dòng của ca nô là :
12 : 0,8 = 15 (km/h)
Gọi vận tốc của dòng nước và thuyền là \(v_1\) và \(v_2\)
Thời gian bè trôi:\(t_1=\frac{AC}{v_1}\) (*)
Thời gian chuyển động :
\(t_2=0,5+\frac{0,5\left(v_2-v_1\right)+AC}{v_1+v_2}\) (**)
\(t_1=t_2\rightarrow\frac{AC}{V_1}=0,5+\frac{0,5\left(v_2-v_1\right)+AC}{v_1+v_2}\)
Giải ra ta được: \(AC=v_1\)
Thay vào (*) có:\(t_1=1h\)
Thời gian thuyền quay lại tại B cho đến lúc thuyền đuổi kịp bè là:
\(t=1-0,5=0,5\left(h\right)\)
Vận tốc dòng nước là:
\(v_1=AC\Rightarrow v_1=\frac{6km}{h}\)
a) gọi \(v_x\) là vận tốc của xuồng
Ta có: \(t_1=\dfrac{56}{v_x+4}\)
\(t_2=\dfrac{56}{v_x-4}\)
mà: \(t=t_1+t_2\)\(\Rightarrow\) \(4,8=\dfrac{56}{v_x+4}+\dfrac{56}{v_x-4}\) \(\Rightarrow\) \(v_x=24\left(\dfrac{km}{h}\right)\)
b)
Thời gian xuồng đi là: \(t_1=\dfrac{56}{24+4}=2\left(h\right)\)
Thời gian sửa máy là: \(t_0=15P=0,25h\)
Quãng đường xuồng trôi được khi sửa máy là:
\(S_1=t_0.v_n=0,25.4=1\left(\dfrac{km}{h}\right)\)
Vậy thời gian đi hết quãng đường xuồng bị trôi là: \(t_3=\dfrac{S_1}{v_x-v_n}=\dfrac{1}{24-4}=0,05\left(h\right)\)
Thời gian thuyền đi về với TH bình thường:
\(t_2\)\(=\dfrac{S}{v_x-v_n}=\dfrac{56}{24-4}=2,8\left(h\right)\)
\(\Rightarrow\)\(t_4=t_2+t_3+t_0=2,8+0,05+0,25+3,1\left(h\right)\)
Thời gian đi và về: \(t=t_4+t_1=3,1=2=5,1\left(h\right)\)
Gọi v1 là vận tốc của ca nô so với dòng nước, v2 vận tốc của nước so với bờ, v là vận tốc của ca nô so với bờ:
Khi xuôi dòng: v = v1 + v2 (0,50 điểm)
Khi ngược dòng : v' = v1 – v2 (0,50 điểm)
Giả sử B là vị trí ca nô bắt đầu đi ngược, ta có: AB = (v1 + v2) T (0,50 điểm)
Khi ca nô ở B giả sử chiếc bè ở C thì: AC = v2T (0,25 điểm)
Ca nô gặp bè đi ngược lại ở D thì:
l = AB – BD (0,25 điểm)
→ l = (v1 + v2) T – (v1 – v2)t (1) (0,50 điểm)
l = AC + CD (0,25 điểm)
→ l = v2T + v2t (2) (0,50 điểm)
Từ (1) và (2) ta có :
(v1 + v2)T – (v1 – v2) t = v2T + v2t (0,50 điểm)
→ t = T (3) (0,25 điểm)
Thay (3) vào (2), ta có :
l =2 v2 T (0,25 điểm)
→ v2 = l/2T (0,25 điểm)
Thay số: v2 = 6/2,1 = 3 km/h (0,25 điểm)
kocos hình vẽ ko kí hiệu
ko gọi nốt
sao biết a vs b vs c haizzzz
Gọi vận tốc dòng nước là x và vận tốc ca nô là y
Nếu x = 0 => V trung bình của ca nô là y
Nếu x>0 => V trung bình của ca nô là: ((x+y)+ (x-y)) /2 = x
=> Vận tốc dòng nước ko làm ảnh hưởng đến vận tốc trung bình của ca nô
Xin 1 like nha bạn. Thx bạn
a) Thời gian ca nô đi xuôi dòng từ A đến B là
t1= \(\frac{S}{v_c+v_n}\)= \(\frac{60}{25}\)= 2,4(h)
Thời gian ca nô đi ngược dòng từ B về A là
t2= \(\frac{S}{v_c-v_n}\)= \(\frac{60}{15}\)=4 ( h)
Tổng thời gian chuyển động của cano theo dự định là
t= t1+ t2= 6,4 (h)
b) Quãng đường mà ca nô đã đi từ B đến A trước khi bị hỏng là
60. \(\frac{1}{2}\)= 30 ( km)
Thời gian ca nô đã đi được là
\(\frac{30}{15}\)=2 ( h)
Do hỏng máy và sửa chữa mất 36 phut( =0,6h)
Quãng đường mà ca no bị nước đẩy là
0,6. 5= 3 ( km)
Quãng đường cần phải đi để về A là
30+3= 33km
Thời gian còn lại để về đúng dự định là
4h- 2-0,6=1,4 ( h)
Vận tốc cần đi để về đúng dự định là
\(\frac{33}{1,4}\)= 23,57( km/h)
\(\Rightarrow\left\{{}\begin{matrix}v=\dfrac{S}{t}=\dfrac{15}{\dfrac{40}{60}}=22,5km/h\\v1=\dfrac{S}{t1}=\dfrac{15}{\dfrac{5}{4}}=12km/h\\\Rightarrow t=\dfrac{S}{\dfrac{v-v1}{2}}=\dfrac{15}{\dfrac{22,15-12}{2}}=2,857h\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t1+t2=15h20'-6h-2h=7h20'=\dfrac{22}{3}h\\t2-t1=\dfrac{40}{60}=\dfrac{2}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}t1=\dfrac{10}{3}h\\t2=4h\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}SAB=\left(v1+2,88\right)t1=\left(v1+2,88\right).\dfrac{10}{3}\left(km\right)\\SAB=\left(v1-2,88\right).4\left(km\right)\Rightarrow v1=31,68km/h\Rightarrow SAB=115,2km\end{matrix}\right.\)